
 

 

 

 

 

 

 

 

 

 

 

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010

       run 
 

ODABA
Next Generation

  

ODABA
NG

  



- 2 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

run Software-Werkstatt GmbH 
Weigandufer 45 
12059 Berlin 

Tel:  +49 (30) 609 853 44 
e-mail:  run@run-software.com 
web: www.run-software.com 

Berlin, October 2012 



 - 3 - 

  

1 Introduction ........................................................................................... 4 

2 Suit the application to the words ......................................................... 5 

Object-oriented or relational .................................................................... 5 

ODABA
NG

 does more .............................................................................. 6 

3 Technical specialities ........................................................................... 9 

Events en masse ..................................................................................... 9 

Talk to others ......................................................................................... 10 

Everybody likes to script........................................................................ 10 

4 Technical astonishments ................................................................... 11 

Flexibility in every sense ....................................................................... 11 

Store the data where you want ............................................................. 12 

Concurrency – no problem .................................................................... 12 

Transactions .......................................................................................... 12 

Data versions ........................................................................................ 13 

5 No chance without tools ..................................................................... 14 

The annoying administration ................................................................. 15 

The right development tools .................................................................. 16 
The Terminology model - Terminus ................................................. 17 
From terminology model to data model - Class Editor ..................... 18 
Application design - Designer .......................................................... 19 
Programming in ODE - Class Editor / Designer ............................... 20 
Application documentation – Terminus ............................................ 21 
Command line Tools ........................................................................ 21 

6 And what does all this cost? .............................................................. 22 

7 More Documentation! ......................................................................... 23 

8 Downloads and support ..................................................................... 24 

9 References ........................................................................................... 25 

 

 



- 4 - 

1 Introduction 

With ODABA
NG

 the first terminology-oriented database management system has 
been provided, which supports a smooth transition from the conceptual design 
(list of requirements) via technical specifications (process design) up to applica-
tion and documentation. To meet the concept and terms as being used in the 
everyday work in the database and in the final product – that is something cus-
tomers really liked to have, and ODABA is a technology supporting this goal. It is 
not surprising: Using proper terminology avoids mistakes, increases development 
efficiency and product quality is growing.  

Terminology-oriented database systems are a conceptual extension of object-
oriented database systems, i.e. one may refer to most of the standards and tech-
nologies known from UML and object-oriented technologies.  



 - 5 - 

2 Suit the application to the words 

Basically, ODABA
NG

 is terminology-oriented not only from a philosophical point of 
view. Meat and potatoes of all ODABA

NG
 applications are terminology models[1], 

which can be considered as extended Concept Systems [9][10].  

Another basic idea of ODABA
NG

 consists in using development resource objects 
as atomic units in the application development. Development resource objects are 
documented units that can be combined in many different ways in a project. Doc-
umentation topics in the terminology model are development resource objects as 
well as data types, functions, parameters, forms, controls and many others. De-
velopment resource objects can be combined in different ways e.g. within an data 
model, application, user or technical documentation, WEB sites, UML diagrams 
and others.  

Each development resource object is a document topic, i.e. documentation is the 
backbone of the technology provided with ODABA

NG
. Exploring the information 

from the terminology model, an object model can be created automatically, which 
covers up to 80% ob the model requirements. From the object model the applica-
tion design will be derived and finally, you may get documentation and online help 
with one button click.  

With ODABA
NG

 we did not want to provide something new and strange, but we 
tried to stay with known technologies as far as possible. The Object Data Standard 
ODMG 3.0 [2] seemed to be an appropriate base and ODABA

NG
 supports most of 

the features suggested in this standard.  

But this was not enough. Several extensions had to be made in order to fulfil the 
requirements of a terminology-oriented database, but also in order to fulfil extend-
ed technical requirements of ODABA

NG
,  

Object-oriented or relational 

Providing an object-oriented application, usually, implies an increased initial effort. 
In the long term, however, an object-oriented application is easier to maintain and 
easier to manage. 
Typically, a project 
started ones will grow 
over time, in which 
case the effort in a re-
lational application 
grows exponentially, 
while object-oriented 
applications grow line-

relational 
approach 

object-oriented 
approach 



- 6 - 

ar [11]. Moreover, using object-oriented database technologies releases the de-
veloper from implementing a data layer, since this is a built-in function of the ob-
ject-oriented database management system. Practically, this means: no Select, no 
Join statements – data can be accessed directly and immediately. 

In contrast to relational database management systems (RDBMS), object-oriented 
database management systems (OODBMS) support the functional model in addi-
tion to the data model. Theoretically, the dynamic model is supported by OOD-
BMS as well, but practically, most OODBMS do not provide much support for this 
model. ODABA

NG
 supports the dynamical model by means of system and applica-

tion events on different levels. This allows developing event-controlled applications 
using Active Data Link technologies [6].  

The object-oriented data model is more expressive than the relational one. Many 
things that have to be programmed in a relational environment (joins, selects) 
simply become part of the schema definition in the object model.  

Many OODBMS combine data model and functional model definition within a pro-
gramming environment (e.g. within a C++ class definition).  This sometimes caus-
es the impression, that object-oriented databases are an integrated part of a pro-
gramming language or a specific program language extension. Thus, known 
OODBMS as FastObjects or ObjectStore do support only one class type per ob-
ject type. Since there is no theoretical or practical reason for such a restriction, 
ODABA

NG
 supports different implementation classes as C++, .NET, OSI and De-

sign classes. 

ODABANG does more 

ODABA
NG

 shows, that there is also a classical approach for object-oriented data-
base systems, which clearly separates the definition of the object model and the 
functional model. This becomes possible, because ODABA

NG
 distinguishes be-

tween object types and implementation classes. Since implementation classes are 
specializations of object types, developing the object model becomes independent 
from the functional model. When necessary, an object type may be specialised to 
different implementation class. Thus, ODABA

NG
 applications become more flexible 

concerning different programming languages.  

ODABA
NG

 allows one object type to be he base for different implementation clas-
ses. Thus, the „Person“ object type might be implemented at the same time e.g. in 
a C++ class, in an ODABA Script Interface (OSI) class and in a design (GUI) 
class. Strictly separating object model and functional model increases flexibility of 
object types, since those are not restricted to one class type, anymore.  

The object-oriented kernel of ODABA
NG

 is based on the Object Data Standard 
ODMG 3.0 [2] and supports its requirements for the object model concerning: 



 - 7 - 

 Inheritance 

 Relationships and inverse relationships 

 Enumerations 

 Module/Namespace-Hierarchy 

This, however, is not sufficient for ODABA
NG

. Many significant extensions have 
been provided, which mainly result from the requirements of the terminology mod-
el. Most important extensions are features as: 

 Shared inheritance allows inheriting more than one object instance from 
another object instance (e.g. creating several employee instances for one 
person instance, or different implementation classes for an object type).  

 Set relations, includes definitions of superset and subset relations for re-
lationships and extents, but also defining intersections or union sets in the 
object model. Set relations are maintained by ODABA

NG
, which consider-

ably reduces the burden of work in application development.  

 Hierarchical enumerations, which are also called classifications, provide 
a way of defining object classes on different levels.  

 The module/namespace hierarchy has been expanded by a project level 
above.  

 Multi-lingual text attributes allow providing text in several languages. 

This is just a subset of useful extensions provided with the ODABA
NG

 object mod-
el, which are described in detail in the ODABA

NG
 online documentation [3]. 

The functional model of ODABA
NG

 supports C++, OSI (ODABA Script Interface) 
and GUI classes (presentation methods). A .NET interface allows accessing the 
database and implementing methods in C#, MS Visual Basic or Java. 

In large projects, which require a strict separation between database, business 
and application layer, it becomes obvious soon, that persistent object types do not 
provide sufficient information for implementing a convenient business and applica-
tion logic. Both layers usually require additional information about the application 
state. 

Therefore, ODABA
NG

 supports so-called Context classes, which provide required 
runtime information and allow defining and implementing the behaviour down to a 
single property in the object model. Typically, business logic is implemented in 
ODABA

NG
 applications vie database context classes, which are linked to object 

types or their properties.  

Just as well, the application logic can be implemented in application context clas-
ses, which are linked with controls and other GUI elements of the graphical user 
interface. 

What seems to be rather complicate at the first glance, in fact, makes application 
development easier, since separating project layers increases transparency of the 
application.  



- 8 - 

In relational environments, causal dependencies can be implemented via triggers. 
OODBMS (including ODABA

NG
) support events and event handlers, instead. Be-

sides the object and the functional model, ODABA
NG

 supports a causal model (or 
dynamic model), which defines events as relevant state transitions of one or more 
objects. Most event handling database systems send the event just to the object 
causing it, e.g. update events for a Person object instance are sent to the Person. 
This is useful in many cases, but not sufficient. A causality model, however, de-
scribes the relationship between the event generating object (sender) and reacting 
objects (receiver). Supporting such a causality model is, indeed, a new area cov-
ered by ODABA

NG
.  

In addition, ODABA
NG

 supports two more models, which are not sensational, but 
nice to have: 

The documentation model is a consequence from the terminology-orientation of 
ODABA

NG
. The documentation model is ISO704 [9] compliant, but provides signifi-

cant extensions. Besides concept definitions, all development resource objects 
(object types, properties, functions, parameters etc.) may be documented in doc-
ument topics, which provide standard documentation features. The direct link be-
tween documentation and documentation subject is an important practical ad-
vantage. In addition, the documentation model supports notices, which might be 
linked to any development resource object and allow storing development notes.  

The administration model is another model extension, which is provided by 
ODABA

NG
 in order to support user and process administration. User and user 

groups are also referred to in the notification system, which allows sending notices 
to other developers.  

The variety of ODABA
NG

 features is described in detail in „Technical Overview“ [5] 
and in „Database Concepts“ [8].  



 - 9 - 

3 Technical specialities 

More than other OODBMS, ODABA
NG

 supports interfaces to other systems, not 
only concerning data exchange with other databases or documents, but also for 
supporting event driven applications and different ways of communicating with the 
database.  

Events en masse  

ODABA
NG

 allows developing simple application driven systems. Much more effi-
cient are, however, event driven systems, since those allow implementing con-
sistent and robust business logic. Therefore, ODABA

NG
 generates a number of 

system events not only on object type level but also on property level. Besides 
system events, the developer may define other data events in the causality model.  

Event handler can be implemented in database context classes as OSI-
Expression, C++ or .NET functions. Context class event handlers react immediate-
ly, when the event is signalled.  

This is, however, not sufficient for applications that require an Active Database, 
since in this case the application needs information about changes for data and in 
application states. In contrast to other DBMS, ODABA

NG
 supports the require-

ments of Active Data Link [6] which is a pre-condition for becoming an active da-
tabase. Thus, ODABA

NG
 generates additional handler events, i.e. events are 

passed through database access handles (e.g. property handles) to the applica-
tion. In contrast to business logic, which usually needs to react immediately on da-
ta events, application logic reacts only, when a database transaction has been 
committed. ODABA

NG
 collects data events in a so-called read transaction, which 

also optimises data events.  

Context and handler events do not pass process borders. Cross-process events 
are generates when applications communicate with an ODABA

NG
 server. In this 

case, server events are sent asynchronously to the clients and might be pro-
cessed by clients. Limited server events are also generated, when running a repli-
cation server.  

Moreover, ODABA registers changes in the database, which creates a sort of lazy 
events, that can explored by the application.  



- 10 - 

Talk to others 

Application development with ODABA
NG

 is possible on different levels. ODABA
NG

 
applications might be implemented completely without using the ODABA

NG
 devel-

opment environment (ODE). The object model can be defined by means of ODL-
Script (Object Definition Language). Schema definitions can be loaded to the dic-
tionary by means of a Schema Loader. After implementing the schema, the appli-
cation might be implemented in C++, C# or Visual Basic (using the .NET inter-
face), but also in OSI or mixed. Via an ICE Interface,) an ODABA

NG
 database 

might also be accessed from within PHP or JAVA programs.  

With the ODE, however, ODABA
NG

 provides a comfortable development environ-
ment, which supports specifying the terminology model, defining the object model, 
implementing the functional model and designing and implementing the applica-
tion model, which makes life much easier. 

Everybody likes to script 

Beside standard application programming interfaces (APIs) for .NET, ICE and 
C++, ODABA

NG
 provides a comfortable script language. The ODABA Script Inter-

face (OSI) supports data definition language (ODL), database queries (OQL) and 
data manipulation (OML). Considering the syntax, OSI is much similar to JAVA or 
C# and, hence, easy to understand for C++, C# or JAVA developers. OSI com-
pletely supports ODABA

NG
 API functions, which allows accessing all elements de-

fined in the object model (including metadata). In order to store results or interme-
diate data, OSI also supports locally defined data types, which are not part of the 
database schema. From within OSI, the database appears like a huge address 
space, since database extents and properties appear as ordinary variables in an 
OSI method. OSI variables represent elementary values, but also of complex data 
types or object collections.  

Another feature provided by OSI is the document template, which is used in order 
to define documents accessing the database (Open Office) or HTML pages for 
WEB presentations.  



 - 11 - 

4 Technical astonishments 

ODABA
NG

 also provides a number of technical surprises. On the one hand, ODA-
BA

NG
 provides scalability concerning different aspects. Different hardware and 

system platforms are supported as well as a number of client/server models or 
storing data in different types of databases. But also for database standard fea-
tures as transaction mechanisms or locking, ODABA

NG
 always supplies some nice 

extensions.  

Flexibility in every sense 

ODABA
NG

 provides platform independency on different levels. On the one hand 
ODABA

NG
 applications may run in different operating systems (MS Windows, 

LINUX, Sun Solaris), including ODABA
NG

 GUI applications, which are based on 
QT (Nokia), which provides a platform independent GUI subsystem. Data might be 
stored in a database as PIF data (Platform Independent Format). This makes it 
possible, simply copying a database e.g. from an Intel machine to a SUN machine.  

The current ODABA
NG

 version supports several client server models.  

 File server 

 Replication server 

 ODABA server 

File servers are simple to administrate and may be used in local networks. The file 
server simply trusts the file server functions of the operating system and does 
nothing more than delivering requested data sequences and locking data areas in 
the database file.  

Replication servers are also „stupid“ servers, which are mainly used for accessing 
a server accessible via internet. The client loads a local database copy, which is 
updated from the server, whenever a transaction has been send to the server. 
This makes clients performing like local applications, even though the database is 
located on a server somewhere in the internet.  

The ODABA server is intended to be used in local networks, too. In contrast to the 
file server, business logic is mainly executed on the ODABA server.  

The application development is not affected by the client/server model, i.e. the cli-
ent/server model might be replaced at any time by another one.  



- 12 - 

Store the data where you want 

As most DBMS, ODABA
NG

 supports interfaces to external data formats. Besides 
ESDF (Extended Self Delimiter Files, a CSV extension), ODABA

NG
 supports Flat 

Files, OIF (Object Interchange Format) and XML, as well as access to several re-
lational databases.  

A completely new path has been stricken 2006, when the multiple storage inter-
face (MSI) had been created for ODABA

NG
, which allows storing data and metada-

ta in different storage formats. Thus, ODABA
NG

 data, but also schema definitions 
might be stored e.g. in XML or XML schema, but also in OIF and ODL. Theoreti-
cally, it becomes possible to store an ODABA

NG
 database completely in XML stor-

age format. This does not make much sense, but the feature is used mainly for 
importing or exporting complex data structures or for processing SOAP and WSDL 
requests.  

MSI becomes more interesting in connection with relational databases. Since rela-
tional and object-oriented databases are identical concerning the amount of infor-
mation that can be stored [7], it becomes obviously possible to store the content of 
an ODABA

NG
 database also in a relational database. In order to follow customer 

preferences concerning specific data storage formats, data can be stored in an 
Oracle, MS SQL Server or MySQL database without loosing the benefits of object-
oriented development. An object-relation mapper transfers the data model to a re-
lational schema. In order to support Active Data Link, additional meta-information 
is stored in an Object Manager database.  

Concurrency – no problem 

ODABA
NG

 developers need not to deal very much with concurrency control and 
locking. ODABA

NG
 supports explicit locking for object instances and collections, 

but usually, locking strategies are controlled by the system. Implicit locking strate-
gies for pessimistic and optimistic locking help the developer and prevent the ap-
plication from deadlock situations.   

Transactions  

Sooner or later, every application needs transaction management, since nobody 
can estimate the consequences of complex changes. In an object-oriented envi-
ronment, a simple action as inserting an instance to a collection, implicitly may in-
sert the instance also to supersets or inverse collections. In addition, events are 
fired, which may cause other reactions and data modifications etc.  



 - 13 - 

Any modification in the database (as create, delete, insert, remove or update) 
leads to a number of determined consequences as maintaining supersets and 
subsets or inverse relationships and indexes. Other, undetermined, consequences 
are caused by reactions implemented in the business logic, which may react on 
update events causing further other modifications. Each step in such a chain of 
reactions may fail. Hence, each modification is encapsulated automatically in an 
internal (short) transaction, which rolls back all the changes, when a problem has 
been detected.  

Moreover, ODABA
NG

 supports long transactions, which keep changes in memory 
or store those on an external device until committing the transaction. In addition, 
ODABA

NG
 supports save transactions, which store after images in a transaction 

log before writing those to the database. The transaction log also provides a log 
file, which allows tracking changes and restore data in case of data crash,  

But also concerning transactions, ODABA
NG

 offers 
something special. Persistent transactions called work-
space enable users storing modifications in its own work-
space or in a group workspace within a workspace hierar-
chy. Each workspace defines a very long transaction, 
which may take days or even weeks. Changes within a 
workspace become visible only for users working in the 
same workspace or below. In contrast to normal transac-

tions, workspaces are accessible from several processes and users. When the 
changes in a workspace are completed, the workspace can be discarded or con-
solidated in order to store changes in the upper workspace or in the database. 

Data versions 

Data versioning is not a typical database feature. Data versioning means, that 
changes of an instance or index are stored in a copy while the old state of the in-
stance or index is kept. ODABA

NG
 supports different ways of data versioning.  

Instance versioning allows keeping several versions of an object instance, but 
does not include indexes and relationships. Instance versioning is easy to handle, 
but often not sufficient.  

With consistent versioning, ODABA
NG

 provides a versioning feature, which com-
pletely preserves the data base state at certain points in time. Using consistent 
versioning, one may always go back in time in order to browse previous database 
states, but changing the past is not possible. 

Consistent versioning is also used for creating schema versions in the dictionary. 
A new schema version is just a new database version in the dictionary. Since pre-
vious schema definition can still be read, this technique is applied for “online 
schema evolution” in order to update older instances to the new schema version. 

 WS0 

DEV Prod 

UG1 UGN 

U1 U1 U1 U1 U1 U1 Un 



- 14 - 

5 No chance without tools 

Every database management system (DBMS) needs tools, even the best one. 
Therefore, the ODABA team has invested a lot in order to provide powerful and 
ergonomic tools for maintenance and development.  

But we did more than this. With ODABA
NG

 development tools you get all the power 
to customize the same tools according to your specific requirements.  



 - 15 - 

The annoying administration 

Compared with other DBMS, the administration effort for ODABA
NG

 is low. Never-
theless, especially complex systems require appropriate tools for data mainte-
nance. Unexpected results may appear resulting from unexpected data as conse-
quence of complex transactions.  

One way for analysing data in the database is OSI, which allows accessing each 
bit of data. Another possibility is a data browser. With the „Object Commander“ 
ODABA

NG
 provides a tool, whit a look and feel of well known Commanders as Nor-

ton, Total or Midnight Commander, which may look familiar to many users.  

 

Integrated in the object commander you will find several functions for database 
maintenance, consistence checks and repair tools.  

For people who like console applications, corresponding utilities might be called 
via console commands. A pendant to the Object Commander is the OShell, which 
is a console application similar to the DOS or Bash console. Within the OShell, the 
database can be browsed like browsing a file system.  



- 16 - 

The right development tools 

A terminology-oriented development environment begins, of course, with the word 
(definitions in the terminology model) and ends with words (the documentation). 
Besides, the complete development process is supported by document topics and 
notices.  

Needless to say that development is possible without ODABA
NG

 development 
tools, simply referring to OSI/ODL and application program interfaces (API).  

When getting deeper into ODABA and its philosophy, the ODABA
NG

 Development 
Environment (ODE) offers a number of additional features and enhancements. 
Moreover, you may extend or customize the tools, which are delivered with all the 
sources and resource databases. 

The ODE provides a series of tools that completely support the development pro-
cess from the problem analysis up to the final product and its documentation. Just-
in-time documentation is a basic principle all ODE tools are based on. Beside 
documentation of development resources, concept definitions, themes and hierar-
chical topic structures are supported.  



 - 17 - 

The Terminology model - Terminus  

Development within the ODE starts in the terminology model (problem analysis) 
supported by Terminus. Here, the problem can be described in detail within a 
terminology model (domain model). From the information provided in the topics, 
documents, UML graphs, HTML sites and other types of presentation might be 
generated.  

  

Terminus is not yet completed, but the prototype available already supports many 
important features. The first complete Terminus version is expected in 2011.  



- 18 - 

From terminology model to data model - Class Editor 

Concepts in a terminology model become object types in the object model, which 
can be processed with the Class Editor. Since the terminology model contains up 
to 80% of the schema information, expanding the terminology model to an object 
model becomes really easy.  

 

The document topics linked with the concepts and characteristics automatically 
become documentation topics of object types and properties. Documentation can 
be shown and improved while defining details of the data model.  

Several wizards support the developer in order to complete rather complex data 
definitions. After finishing the data model, it will be checked. Errors are reported 
and after correcting the errors, the schema changes from the development state to 
the production state.  



 - 19 - 

Application design - Designer 

By means of the Designer, a GUI application can be designed immediately based 
on the object model defined in the Class Editor. Due to the ADL technology [6] a 
well functioning prototype can be provided without writing a single line of program.  

 

The designer provides design patterns for typical application elements (dialog, list 
and tree browser, virtual tab, tree application, wizard etc), which generate complex 
design elements for the application.  

All forms and controls, as well as regions or columns in tables and trees are refer-
ring to properties or extents as data source. A GUI framework feeds the GUI ele-
ments with data from the defined data sources and ADL cares about updating data 
whenever necessary.  

Since ODABA
NG

 GUI elements are very powerful, the effort for application devel-
opment can be reduced to 20% and less. Moreover, GUI resources provide docu-
mentation features, which can be referred to later on in the application documenta-
tion or generated online-help. 



- 20 - 

Programming in ODE - Class Editor / Designer  

In order to define business rules or more sophisticated application behaviour, pro-
gramming becomes necessary in many cases. For implementing functions in one 
of the supported programming languages, one may use any well known program-
ming environment.  

Continuing with ODE, however, one benefits not only from automatic code genera-
tion, but also from just-in-time documentation feature, which helps to keep docu-
mentation up-to-date.  

 

In order to implement application rules, functions might also be implemented with 
similar comfort within the designer. 



 - 21 - 

Application documentation – Terminus  

The last step is finishing the documentation, which, hopefully, had been updated in 
all development phases. Nevertheless, additional documentation topics are 
usually required and topic hierarchies have to be created in order to provide useful 
and readable documentation.  

 

Creating topics and topic hierarchies will be done with Terminus, again. Terminus 
also provides features for generating different document types and online help for 
GUI applications.  

Command line Tools 

A series of tools described in „Database Utilities“ [12] is provided in order to sup-
port maintenance and database administration, as well as running server com-
mands from a remote console.  



- 22 - 

6 And what does all this cost? 

ODABA
NG

 is one of the few systems, which are available as LINUX and as MS 
Windows version with a GPL (GNU Public License). As long as you publish the 
source code of the system or application that you have build with ODABA, you 
need not to pay anything. The only third party product, used in ODABA is QT 
(Nokia), which might be used as well since it is based on a LGPL.  

When using ODABA for developments, which are not intended to become open 
source products, a commercial development license becomes necessary. As long 
as you develop and maintain a non open source project you need such a com-
mercial licence.  

There are no run-time licences required, except when using external software from 
within ODABA as Oracle or MS SQL Server. 

Finally, you may join the ODABA Development Foundation, which supports further 
ODABA development and allows you also to influence further development direc-
tions and themes.  



 - 23 - 

7 More Documentation! 

On our documentation download site at  

www.run-software.com/content/downloads/documentation  

all ODABA and related documents are published an can be downloaded. Docu-
ments have been divided into 6 groups: 

0 – Concepts 

1 – Technical details 

2. – Installation and usage 

3 – Services and Tools 

4 – ODABA development environment 

P – Publications 

In addition, the are two online documentation systems available on our WEB sites: 

All about the ODABA database  
(http://www.run-software.com/content/documentation/odaba) 

ODABA GUI Design and development 
(http://www.run-software.com/content/documentation/odabagui) 

http://www.run-software.com/content/downloads/documentation
http://www.run-software.com/content/documentation/odaba
http://www.run-software.com/content/documentation/odabagui


- 24 - 

8 Downloads and support 

An evaluation version can be downloaded from  

http://www.run-software.com/content/downloads 

We suggest, however, to register in order to receive news and information about 
new ODABA versions.  

We try to respond to all questions from the open source community as quick as 
possible, but we will reply to registered users, only, since others will not pass the 
SPAM barrier. We provide, however, also mandatory support for commercial li-
cence holders within two working days. Moreover, we are open for any sort of 
special agreements with our customers.  

We also offer training, coaching, average support, application development and 
other services.  

http://www.run-software.com/content/downloads


 - 25 - 

9 References 

References referred to author run are available at: 

www.run-software.com/content/downloads/documentation 

Also, most documents from Karge, R are available there. 

 
[1]  Karge R.: A terminology model approach for managing statistical metadata,  

Open Forum on metadata registries, Berlin, 2005,  
www.run-software.com/content/downloads/documentation/TerminologyModel.doc 

[2]  ODMG; The Object Data Standard ODMG 3.0, Academic Press, 2000 
[3]  run: ODABA Online documentation, Berlin, 2007-2010 
[4]  Karge R.: Real Objects, Addison Wesley (Deutschland) GmbH, Bonn, 1996,  
[5]  run; ODABA Technical Overview, Berlin, 1995-2007- 2009 
[6]  Karge R.: Active Data Link, run Software, Berlin, 2002-2007,  

www.run-software.com/download/UnifiedDatabaseTheory.doc 
[7]  Karge R.: Unified Database Theory, run Software, Berlin, 2003,  
[8]  run; ODABA Database Concepts, Berlin, 1995-2010 
[9]  ISO 704: Terminology work – Principles and methods 
[10]  ISO 1087: Terminology work – Vocabulary 
[11]  Fowler, M.: Patterns of Enterprise Application Architecture, Addison Wesley, 2003  
[12]  run; ODABA Database Utilities, Berlin, 1995-2010 
 

http://www.run-software.com/content/downloads/documentation

