

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010

 run

Technical Overview

ODABA
NG

 2

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin
Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 3

Content

Introduction 4

ODABA2 - Recursive data model 6

ODABA2 – Model levels and database 7

Database Concepts 8

Object Model – Types and Properties 9

Object Model – Collections 10

Object Model – Enhanced Concepts 11

Functional Model – Overview 13

Functional Model – System Classes 14

Functional Model – Context Classes 15

Dynamical Model – Concepts 16

Technical Concepts – Enhanced features 17

Technical Concepts – Performance issues 19

Query or script language 20

Tools 21

Multiple storage support 22

Data Exchange and Communication 23

Command line Tools 24

ODE - Overview 25

 Introduction

Features ODABA2 is an object-oriented database management sys-
tem (ODBMS). It supports many of the standard features
for object-oriented databases, different interfaces and pro-
vides a number of extension features.

Conceptually, ODABA is one of the most enhanced OD-
BMS in the world. Technically it supports several platforms
and a number of special features

Models ODABA is an enhanced P2 model implementation, i.e. it
supports types, relationships and collections, but also set
relations and classifications, multiple inheritances and
many other advanced features. ODABA supports the data
model, the functional and the dynamic model.

Interfaces You may access ODABA via C++ or COM-Interfaces.
ODABA supports XML. It provides a script interface OSI
with embedded query language (OSI).

Platforms ODABA runs on all Windows platforms, LINUX and SUN
Solaris. You may run ODABA in a local environment as well
as in Client/Server environment. ODABA provides PIF
(platform independent format) databases, which can be
moved simply by file transfer between windows and SUN
platforms.

Data storage ODABA provides different types of data storage. Usually,
data is stored in an ODABA database, which is the most
efficient way. Since the ODABA database format is very
specific and can be read by ODABA tools, only, ODABA
supports XML and relational database

1
 data storage. Using

XML or ORACLE or MS SQL Server, you may access the
ODABA database using XML tools or RDBMS tools. In this
case, the performance is not as good, since relational da-
tabases or XML are not as optimized for accessing com-
plex linked data structures as the ODABA database is.

Transactions ODABA supports not only nested transactions, but also
short, long and very long transactions, which is a persistent
transaction mechanism that provides work area features.

1
 Relational database storage for ORACLE and MS SQL Server will be available in July 2007

 5

Conditions ODABA is an “open source” product. You might download
one of the world’s best database systems free of charge at
any time from the www.run-software.com web site as long
as you are using it for your own purpose. When you are
going to develop software, which you are selling to other
companies, you need to buy a developer license for an ap-
propriate number of users. Source code is available on
demand.

WEB Forum You can register in the WEB forum, which provides you
with extensive documentation, news groups, discussion
groups and more.

Support You may get on-line support as well as extended support,
courses or in-house support according to agreed condi-
tions.

Membership You can sign up a membership with a yearly membership
fee, which is used for further development. Depending on
the fee you may influence the direction and priorities for
further developments

Documentation All documentation is available in the WEB forum. This in-
cludes thousands of pages for concepts, access functions,
tools and other areas, on-line browsers and research pa-
pers.

Tools ODABA provides a number of command-line tools as well
as GUI tools for modeling and documentation.

ODABA2-
philosophy

The ODABA-philosophy is based on the assumption that
human language is a well-proved model, which delivers the
most important concepts for developing a database system.
The second base for ODABA is the Unified Database Theo-
ry, a mathematical theory that allows verifying the different
concepts and constructs.

Because ODABA2 is based on human language and takes
its ideas from this source, you will find several useful con-
cepts and facilities not available within other ODBMS. Even
though ODABA becomes a very complex system it is still
an intuitive system and easy to handle because of its anal-
ogies to human language.

http://www.run-software.com/

 6

 ODABA2 - Recursive data model

Facts are reflected on different levels that are often called data and metadata lev-
el. In general however, these two levels are not sufficient. ODABA2 is based on a
recursive three level hierarchy.

Data level On this level facts of the real world are reflected as states

of an observed objects, i.e. an image of the object is cre-
ated. The way the image looks like is described on the
schema level.

Metadata level On the metadata level the schemes for presenting facts
and data are based on are defined (e.g. as a set of attrib-
utes or rules). For these definitions special objects on the
schema level are created. Data stored at this level are
called metadata

Model level The way reflecting schema objects is defined on the mod-
el level, i.e. the model level is the schema level for the
schema level and the data at this level could be called
metametadata.

 data level
Facts

 metadata level
Schema

 metametadata level
Model

 Model

 Model Schema

 Model Schema Data

 Schema Data

 Data

 7

 ODABA2 – Model levels and database

Data is stored on all levels in the same way in one ore more databases, however,
representing data on different levels has some effect on the relationships between
these databases.

S y s t e m

D a t a B a s e

R e s o u r c e

D a t a B a s e

D a t a

D a t a B a s e

The System Database reflects the model level, i.e. it
contains the schema definition of an ODABA2 schema.
This way it defines the definition of structure definitions
and other objects (rules, descriptions etc.) on the sche-
ma level.

The resource Database contains data at the schema
level (definitions of application structures, methods,
windows, documents etc.). This way it acts as a diction-
ary as well as a repository.

The Data Database contains the application data, i.e.
the facts observed in the real world.

Each of these data bases is considered (in terms of an OODBS) to be an inde-
pendent object-oriented database which can be processed with the same means
and tools, i.e. accessing data on the data level requires the same methods as ac-
cessing data on the schema or model level. However accessing an ODABA2 data-
base always requires a dictionary.

Dictionary Each database in the hierarchy shown above is the diction-
ary for its direct subordinated database(s). Even for the
system database on the top of the hierarchy there is a dic-
tionary. However the dictionary for the system database is
completely identical with the system database, i.e. the sys-
tem database is its own dictionary. In this sense the ODA-
BA2 model is a recursive model.

 8

 Database Concepts

The concepts of the ODABA database are based on a detailed analysis of the hu-
man language. The human language has been analyzed mainly according to its
main principles of reflecting real world facts, i.e. how human language is ordering
facts, describing behavior and causalities.

Basic principles ODABA2 is based on basic principles of the human lan-

guage model, i.e. it tries to reflect the way, knowledge and
data is expressed in human language.

Types Human language reflects facts by categorizing them to
types (such as person, employee...). The type principle is
the base for representing facts and their behavior within the
P1 database. Moreover, ODABA supports conceptual col-
lections and extended set relationships typical for P2
presentations

Operations ODABA supports expressing behavior as operations. Be-
sides standard operations provided by the system develop-
ers can add operations on different levels.

Causalities The causal principle describes the dependency between
causes and consequences, e.g. as reactions on events.
This allows defining processes as well as event-triggered
actions.

Time The temporal principle reflects the facts and their relation-
ships including their histories to present the changes of
facts.

These principles can be found within the different sub models of the object-oriented
model. The type principle you can find within the object model and the functional
model. Causal relationships are reflected within the causal or dynamic model. The
temporal principle, however, has not got a separate model. In ODABA it is part of
the object model.

Recursive models The ODABA-Model is a recursive model, i.e. the represen-
tation of data is the same on data and schema level. Thus,
it is possible to use the same methods for accessing data
on each level, i.e. the data for a person can be accessed
the same way as a structure definition for e.g. Person. This
makes it very simple to add model extensions to the sys-
tem, e.g. for supporting the implementation of methods in
Visual Basic classes.

 9

 Object Model – Types and Properties

Data Types Types describe the way facts are represented. Types can

be elementary or complex. Complex types contain proper-
ties that are associated with a type again.

 Scalar types for elementary types (system types)
CHAR, INT, UINT, REAL, LOGICAL, DATE, TIME,
DATETIME and MEMO are supported.

 Enumerations for simple and hierarchical classifica-
tions
Enumerations can be defined for describing the
categories of a classification.

 Structures for complex types
Structures can be defined for complex types. Struc-
tures can be specialized to classes to reflect the
common behavior of objects of a type.

Keys Keys are used for identifying instances in a certain context.
Any number of keys can be defined for a structure. A key
may consist of several key components, which refer to at-
tributes (transient or not) or collections. Key components
can be marked as case sensitive.

Property types  Attributes (transient or persistent)
Attributes may have literal or complex types. The
lifetime of an attribute depends on the instance the
attribute belongs to.

 References (transient or persistent)
References are addressing dependent instances. A
reference refers to an instance or to a collection.

 Relationships

Relationships reflect links between independent in-
stances. Relationships are bi-directional.

 Base Structures
Base Structures define generalizations for a struc-
ture. ODABA2 supports multiple inheritance as well
as multiple derivation.

Instance Identity Instance identities are created for structure instances as
well as for collection instances. The instance identity in
ODABA2 is a 64-bit number. Hence, the number of in-
stances in an ODABA2 database is practically unlimited.

 1
0

 Object Model – Collections

Sets of instances are represented as collections in ODABA. Collections in ODABA
are always reference collections, except array attributes. Collections may refer to
instances with the same type (typed), to instances having the same base type
(weak typed) or to instances of any type (untyped).

Extents Extents are global controlled collections, which provide an

entry point to the data in a universe.

Hierarchies Extent hierarchies can describe persistent subset relations
as well as unions and intersects.

Collections Collections may appear as independent global collections
within the scope of an active object or as local collections
of a structure instance.

Owning An owning collection owns its instances, i.e. removing an
instance from such a collection means to delete the in-
stance. ODABA ensures that each instance belongs to ex-
actly one owning collection (or reference).

Controlled For controlled collections, ODABA guarantees the con-
sistency of related instances and indexes as well as the
consistence of defined subset relations.

Indexes Ore more persistent or transient indexes can be defined for
each collection. An index is based on a key defined for the
type of the collection. Indexes support ascending and de-
scending orders.

 Unique indexes
An index can be defined as unique index, i.e. the
key values in the index must be unique.

 Identity index
The identity index is a special index that is using
the instance identity as Key.

 Temporary indexes
Indexes can be stored as persistent indexes or
created as transient indexes on demand.

 Consistency verification
ODABA2 ensures the consistence of the indexes
for controlled collections (extents, reference collec-
tions, relationships with inverse reference), when-
ever key components are modified.

 1
1

 Object Model – Enhanced Concepts

Besides the standard concepts for ODBMS the ODABA data model supports some
enhanced concepts. These concepts are concerning with the representation of
rather complex contexts as functional dependencies and complex objects.

Views A view structure defines the intentional (structure) and the

extensional aspect of a certain user view, i.e. the properties
and the amount of instances to be shown in the view.

Structure A view structure defines the intentional (structure) aspect of
a certain user view. It is based on one or more persistent
structures and defines a number of derived properties (at-
tributes, references and relationships).

Extent A view can apply on a set of view paths that refer to collec-
tions according to the type defined in the view.

Operation A view is based on a set operation as UNION, PRODUCT,
MINUS, INTERSECT, which defines the way of combining
the passed collections.

Project A project is the technical reflection of the view of a subject,
which refers to a number of extents as basic concepts of
the project. A database may support several projects that
support cross-links. Projects may form hierarchies.

Module A project may consist of a set of modules, where usually
each module represents a executable unit. Modules may
form hierarchies.

Namespace A module consists of one or more namespaces, which may
again form hierarchies.

Extents Each namespace defines an own domain for storing in-
stances and collections, i.e. has its own set of extents.

Set relations ODABA2 supports consistent set relations as an integral
part of the object model.

Extents Set relations can be defined for extents as logical con-
sistency rules. This includes subset/superset relations, un-
ion and intersect relations.

Relationships Subset relations can be defined between relationships,
which are linked through property paths.

 1
2

Versions Time plays an important rule in many applications. ODABA
supports an independent (orthogonal) time dimension in
the database in different ways.

Instance versions Instance Versions can be created to keep the previous in-
stance state. However, when creating instance versions no
versions for indexes are created. Thus the history of an
instance can be seen but the index search for older ver-
sions is not supported.

Database versions Different versions can be created for a database. When
creating a new database version, modifications on instanc-
es will create new instance versions automatically. Moreo-
ver, indexes and relationships of the older versions are du-
plicated before being modified in the newer version. A roll
back to an earlier version can recreate an earlier state of
the database.

Schema Versions When considering the complex relationships in an ODABA
repository it becomes obvious that it does not make sense
to create versions of a single structure. By creating project
versions, which are universe versions for the dictionary, the
complete state of a repository including the structure defini-
tions, actions, method definitions, forms and many other
repository resources, are preserved.

Thus, ODABA is not only providing on-line schema evolu-
tion but supporting version control as well.

Generic Attributes Generic attributes are attributes that might be defined with
different conceptual versions for an instance (e.g. lan-
guages). This allows presenting an instance according to a
selected type for the generic attribute

Indexes Indexes for keys referring to a generic attribute are generic
indexes. A generic index generates a set of indexes for
each type of the generic attribute (e.g. language).

 1
3

 Functional Model – Overview

ODABA supports the function model (representation of behavior) as methods,
which can be defined in different method classes. From each structure, several
classes can be derived to represent the methods in different ways (e.g. as OSI-
Expression or window template).

Conceptual levels Classes can be provided on different conceptual levels and

on different levels of specialization.

System Classes About 10 System classes provide the basic (generic) ac-
cess functionality to the database. System classes provide
generic access on the property level but also typed access
by means of generated C++ classes.

Problem Classes Type specific methods within problem classes, which might
be implemented in different ways.

Context Classes Context classes support implementing specific behavior in
a certain context (e.g. in a collection. For a specific rela-
tionship). Different types of context classes can be imple-
mented for a type.

Because there are different Class types for implementing methods, a user defined
Structure may be derived to several Classes:

Class Types Classes can be implemented as program or implementa-

tion class.

Program Classes ODABA supports a proprietary scripting language (ODABA
OSI), for implementing methods as well as different pro-
gramming languages. Besides C++ any language support-
ing COM (Visual Basic, Delphi etc) can implement user
classes.

Template classes Template classes are used for data presentation in win-
dows forms, documents or HTML pages.

Structure

Persistent Structure

Program Class Template Class

C++ Window

Implementation Class

.... OSI-Class Document

 1
4

 Functional Model – System Classes

System Classes are provided as C++ classes or via COM. Thus, they can be ref-
erenced in any program environment that supports C++ or COM.

Client/Server Client/Server classes are used to establish a connection

between server and client. ODABA applications are scala-
ble and may run locally, as well as in a client/server envi-
ronment.

Client The client class provides functionality for running an ODA-
BA application (as Connect).

Server The server class provides functionality for running a server
and allows implementing an ODABA server in a specific
environment.

Database access Database access classes provide functions for accessing
databases and repositories or dictionaries.

DataSource The data source handle allows opening a database as be-
ing parameterized in an ini-file or database catalog..

Dictionary This class provides the functionality for accessing structure
and extent definitions. Because a Dictionary handle is a
special database, it supports also all Database handle
class functions, which allows accessing any resource de-
fined in the repository.

Database The class provides functionality for accessing object spac-
es defined in the database. Since each ODABA database
is a root object space, ObjectSpace handle functionality is
inherited from Database..

ObjectSpace

This class contains the functions for accessing (create, de-
lete, get) subordinated object spaces in a database as well
access functions to the extents of the object space.

Property/Value The classes provide functions and operations for accessing
and manipulating property instances and instance values.
The property handle supports cursor functions while value
handles support operations on value properties. The prop-
erty and value handle classes supports more than 250
functions for

 Select, create, delete, copying instances
 Set operations (union, intersect, minus select)
 Creating and accessing views
 Value operations and type conversions
 Locking and transaction features

 1
5

 Functional Model – Context Classes

In many cases, the behavior of an instance depends on the environment or the
context in which the instance is referenced. Within the scope of a database, the
context for a property is defined by the structure containing the property, while the
context for a structured instance is usually a collection (property) that refers to the
instance. Context classes allow modifying standard behavior for a property or in-
stance implemented in a problem class. ODABA supports different types of con-
text classes.

Database Context Database context classes allow defining special behavior of

the database as user’s login or authorization checks. Data-
base context functions are called when opening or closing
a database.

Object Space Con-
text

The object space context allows similar to the database
context defining special access rules for a universe. Data-
base context functions are called when opening or closing
a universe.

Structure Context The structure context allows specializing the behavior of in
instance of a given type. Structure context classes are
used to fill transient attributes or references defined in the
structure or providing access control on instance level.
Structure context functions are called on specific system
events as reading, storing or updating an instance.

Property Context The property context supports specializing the behavior of
in instance of a given type. Property context classes are
used to fill transient attributes or control insert and remove
actions in collections. Property context functions are called
on specific system events as inserting, or removing in-
stances or updating a property value.

BaseContext (General Context Class)

PropertyContext ObjectSpaceContext

TypeContext DataBaseContext

DBBaseContext (Database Contexts)

 1
6

 Dynamical Model – Concepts

The dynamical model of ODABA allows reflecting causalities in the database
model, i.e. defining when and why a behavior is activated. This includes process
definitions as well as very detailed reactions on events. The dynamical model al-
lows defining events as potential state transitions and reactions, which refer to the
method executed in case of an event. Since each time point can be defined as
event, the dynamic model implies process control features as well.

Conditions Conditions are describing the requirements to be met for

behaving in a certain way, i.e. for executing a certain meth-
od. Conditions may be described as logical expressions.
Conditions are typically used for defining validation rules.

Events Events indicate the requirement of executing a certain ac-
tion. Thus, events usually control processes and actions to
be taken.

Application events Application events are defined as relevant potential state
transitions (e.g. an employee now gets more than his boss
and did not before). Pre- and a post-conditions provide a
simple method of defining an event. When raising an event
the associated action (reaction) is executed.

System events System events are defining specific events raised by the
database access system (e.g. read/write or delete/create
events). The typical way of handling system events are
event handler functions in corresponding context classes.

Actions Actions provide the frame for executing a specific method
implemented as program function or template. Besides re-
ferring to the method, the action may pass parameters and
other information required for executing the method.

Reactions A reaction defines the connection between an event and an
action. Thus, the defined action is executed whenever the
event is raised. Because the execution of the action may
cause other events associated with an action, a chain of
reactions is possible just as the consequence of a little
event.

Processes Processes are a special case for executing actions. Pro-
cesses can be organized in sequences or networks con-
trolled by events or time schedules.

 1
7

 Technical Concepts – Enhanced features

ODABA2 databases can be used within a single user environment as well as with-
in a multi-user environment. Standard concepts as client/server support or distrib-
uted databases are supported by ODABA as well as enhanced technical features
like “very long transactions”.

Distributed data-
bases

ODABA2 databases can be defined as consisting of differ-
ent files located on several servers. An ODABA2 database
may be distributed on more than 1 000 000 000 files of the
operating system. The maximum size for each database
file is about 140 000 GB bytes or 2 GB bytes when running
in 32 bit file server mode.

The Root-Base contains the basic database information
and may consist of up to 4 000 Main-Bases. The allocation
of instances to main bases is defined on the extent level,
i.e. instances are stored within the Main-Base defined for
its Extent. The file for the Main-Base 0 is identical with the
Root-Base file.

Each Main-Base consists of up to 32 000 data areas. The
allocation of an instance to an data area is done by the sys-
tem according to the data area specifications. The data
area 0 file is identical with the Main-Base file.

Data Areas can be defined as dynamical data areas or
with a given size. As far as there is no space left within a
Data-Area instances are stored into the next data area.

Standard database The default case is a database consisting of one file, only,
which is Root-Base as well as Main-Base 0 and Data-Area
0. Such a default database does not require any admin-
istration on the physical level.

Standard databases are initialized automatically, when be-
ing opened the first time.

Client/Server The ODABA Client/Server concept is based on specific
ODABA-CS protocols, which is based on TCP/IP. Thus you
may start your ODABA-Server somewhere in the WEB and
you can access it from any place in the world.

In a client server environment databases can be located on
different servers or on the local machine.

..

..

 1
8

File server The file server version works on Windows platforms, only
and is a simple way for running several (updating) applica-
tions simultaneously without installing a server. The data-
base size for file server applications is limited to 2 GB.
When the database exceeds 2 GB, a multiple dataset da-
tabase must be defined (more than one data area).

Object server The object server provides support for all ODABA system
classes. This allows developing applications independent
on local or client server environments.

Multi user envi-
ronment

ODABA provides several features for supporting parallel
processing, i.e. allowing several applications accessing
database resources simultaneously.

Locking Locking features are provided as on the instance or collec-
tion level as implicit locking or explicit locking within the
application. Pessimistic locking strategies are supported as
well as optimistic ones.

Transactions Transactions can be started for a universe (database ob-
ject). On the application level, short (internal) transactions
are supported as well as long (external) transactions. In-
stances participating in a long transaction are stored tem-
porarily in an external transaction database. Nested trans-
actions are supported.

Workspaces Workspaces are a special support for very long transac-
tions. Working in a workspace, each modification will be
stored automatically in the workspace opened by the user.
Changed can be held in a workspace for weeks or month
until they are consolidated or discarded.

Workspaces can be arranged in hierarchies, e.g. for work
groups and users in work groups. Workspaces can be pre-
allocated or created on demand.

Recovery files By using recovery files, all modifications done on the data-
base can be logged including user identification and time
stamp. Thus, the recovery file is a sort of action log on the
one hand and can be used for recover the database in
case of damage on the other hand.

WS0

DEV Prod

UG1 UGN

U1 U1 U1 U1 U1 U1 Un

 1
9

 Technical Concepts – Performance issues

Two level access via instance descriptors allows variable length instances
but also reduces the efficiency of the data base. To increase the performance
ODABA2 uses different techniques combined with additional features.

Server cache In a client/server environment a server cache can be used

to increase the performance. The server cache is optimiz-
ing the cache size according to the access frequency.

Descriptor cache Instance descriptors for frequently read instances are
cached on the server side. Thus it is not necessary to read
the instance descriptor again and instances can be ac-
cessed directly.

Instance cache Instances can be cached on the server side avoiding re-
reading instances. The size of the instance cache can be
configured as well as the flush time for writing modifications
to the database.

Block access Block access is reading and transferring a block of instanc-
es, which extremely reduces the net traffic in a client/server
environment.

Views Views are processed on the server side and may increase
performance extremely as well.

Transaction buffer When processing (adding or modifying) large numbers of
instances, performance can be improved extremely by us-
ing dynamic transaction buffers.

Clusters Instances accessed together in many cases can be stored
in a cluster. When reading a clustered instance not only the
single instance, but the complete cluster is read in. Thus,
no more file access is required when reading other in-
stances stored in the same cluster.

Clustered tables Instances can be stored in clustered tables for providing
faster access. Instances in clustered tables are stored in
one block an do not need an instance descriptor.

 2
0

 Query or script language

Why not providing query language as a programming script language? With ODA-
BA Script Interface (OSI) ODABA provides a script interface, which allows com-
fortable queries, but also any type of database programming

Language Syntactically, OSI is similar to C++/C# or JAVA. It supports

multiple inheritance, function overload and other typical
program language features.

In contrast to a pure programming language, it provides,
however, direct access to the database, since all database
types. members or OSI functions are considered as known
symbols.

collection bool Person::PrintChildren {

VARIABLES

 string names;

PROCESS

 while (next)

 if (children.count) {

 while (children.next) {

 if (names != '') name += '; ';

 names += children.first_name;

 }

 Message(pid + ' has children: ' + names);

 names = ''; }

}

OSI functions OSI supports function calls to built-in functions, but also to
interface extensions or user-defined functions..

API functions OSI supports all ODABA application interface class func-
tions including helper classes, i.e. from within an OSI script,
any Property or Value function might be called. Moreover,
additional support is provided for File access and specific
system functions.

Extensions In order to increase the power of OSI, you may provide ad-
ditional services by implementing your OSI interface clas-
ses.

Context functions One may also invoke context functions (business rules)
from within an OSI function.

Query language As query language, OSI supports most of the requirements
of the ODMG. This includes also support for traditional que-
ry statements as SELECT or JOIN. Those are considered
as OSI built-in functions and might be mixed with other OSI
functions.

 2
1

 Tools

ODABA2 provides three categories of tools as server commands, command line
tools and GUI tool. All tools are considered as developer or administrator tools.

Command line
tools

Command line tools provide administrative and service
functions for developers and database administrators.
Command line tools are available on all supported plat-
forms.

Server commands A collection of server commands allows controlling the
server and performing specific server commands. Server
commands may run on the server or on any client, which
provides remote control.

ODE The ODABA Development Environment provides a number
of GUI applications for defining and documenting the object
model, the functional model and the dynamic model (Class
Editor, Designer, Document Composer).

The present version is available on Windows and LINUX
platforms. All tools have been developed using QT (Nokia),
which provides multi-platform support.

Object Commander The object commander is a data browsing and edit tool,
which provides a tree view that allows browsing the data-
base following the links defined by references and relation-
ships. It allows also editing, copying, creating and deleting
instances or collections of instances.

The object commander is available on Windows and LINUX
platforms.

OSI The ODABA Script Interface provides a Java-like pro-
gramming language, which can be used for browsing or
updating the database, but also for schema definitions
(ODL). OSI is OQL compliant but contains a number of
ODABA specific extensions. OSI includes query language
elements as well as program language elements (Java).
Thus, OSI can be used at the same time for running que-
ries but also for executing programs.

OSI is available on all supported platforms.

 2
2

 Multiple storage support

There is, according o “Unified Database Theory”, no difference between infor-
mation that can be stored in relational and object-oriented databases. Hence, the
content of an terminology-oriented data model can be stored completely in rela-
tional databases as well.

Relational storage
support

ODABA supports generating an entity-relationship model
from an ODABA database schema for ORACLE, MySQL or
MS SQL-Server. The generated model supports data types
defined in the terminology model, but also m:n relationships
and shared inheritance.

Accessing data in
RDBMS

ODABA applications may store data directly in a relational
database. This is not as fast as accessing data in an ODA-
BA database, but allows running SQL queries against an
ODABA database. Data stored in the RDBMS can be ac-
cessed via ODABA functions. ODABA applications are not
affected by the type of data storage chosen for the applica-
tion.

When running ODABA on a RDBMS, data might be read
directly in the relational database, but has to be written via
ODABA access functions.

OR Mapper Since ODABA stored additional system information about
instances and collections, an OR Mapper is used for stor-
ing instance and collection information. Thus, many ex-
tended features (e.g. event management) are available
also when storing data in relational databases.

XML storage sup-
port

ODABA data and dictionary data might be stored in an
XML database. ODABA provides specific XML schema ex-
tensions in order to provide an ODABA database schema
in XML. .

Using XML XML data can be accessed easily using ODABA property
handle functionality. Mainly, XML is used for data exchange
between different systems.

Theoretically, one could run ODABA based on an XML da-
tabase, but this becomes very slowly in is not the intension
of supporting XML.

 ODABA2-Application
 ODABA2-Application

 2
3

 Data Exchange and Communication

There is no homogeneous environment for database applications. Usually a data-
base application has to communicate with several other applications. ODABA2
provides a rich number of data exchange facilities from within an ODABA2 applica-
tion as well as from other applications.

Data Exchange ODABA supports explicit data exchange by means of ex-

change definition and implicit data exchange by property
handles referring to external data sources.

Implicit exchange Within an ODABA2 application external relations like Ac-
cess or SQL-Server relations can be accessed the same
way as internal ODABA2 Extents. Since all data sources
are accesses by means of property handles, the application
will not notice different types of the data source.

Explicit exchange ODABA2 allows defining semantic mappings between an
object-oriented and an entity relationship model. This in-
cludes attributes as well as relationships. It allows trans-
forming databases based on an ER model to an ODABA2-
database and reverse as well as transforming databases
between different ER models.

Supported formats Relational databases can be accessed via the ODABA
ODBC interface. Other data formats as XML, extended
self-delimiter files (ESDF) or flat files can be accessed by
means of special access extensions provided by ODABA.

Accessing ODA-
BA2

Data within ODABA2 databases can be accessed from
within other applications via the C++ or COM API that pro-
vides a large scale of access functionality.

ODABA2-Application

ODABA
Database

ODBC-Server

Access
SQL-

Server

...

...

other
OODBS

File interfaces

ESDF OIF
... Binary

file

 2
4

 Command line Tools

Command line tools provide administrative and service functions for developers
and database administrators. Command line tools are available on all supported
platforms. Most of the tools are available as ODABA Client functions and can be
called from a user-defined application as well.

Server The ODABA server provides faster and optimized access

to the database. You may run an ODABA server in a local
network area but also in Internet.

Server Commands A number of server commands can be called from the con-
sole on the server or on a remote computer. Thus, the
server can be administrated locally but also remote. .

SetupDB The SetupDB command allows upgrading a database to a
higher schema version. This might increase the perfor-
mance when upgrading the database in advance.

CopyDB The CopyDB command allows copying a complete data-
base or parts of it.

CopyResDB CopyResDB allows copying resource objects as structure
definitions, implementation classes, forms and others.

PackDB PackDB allows compressing a database to remove unused
space resulting from deleted instances.

DBSystemInfo DBSystemInfo displays system information for the data-
base as database version, schema version, main-bases
etc.

DBStatistics DBStatistics provides an overview about count and space
used for each instances and indexes by type.

Workspace The Workspace command allows enabling or disabling
workspaces as well as consolidating or discarding work-
spaces or listing existing workspaces in a tree.

License License services are provided when an application is deliv-
ered as application that needs a customer license. ODABA
itself does not require a license but any application might
do so.

TestCS TestCS is a stress test utility for client/server environments.

OShell The ODABA command utility supports many of the program
functions that are available for the system classes. Thus, it
provides a command language that you can run immediate-
ly on your computer in an ODABA console.

 2
5

 ODE - Overview

The ODABA development environment ODE is based on harmonized develop-
ment phases, starting with defining the problem within a natural language up to
reaching the implementation and maintenance. The ODE is supporting phases as
analysis of requirements, object modeling, GUI design and method implementation
and maintenance.

Object model The object model can be defined in two phases. The con-

ceptual phase provides a terminology model, which can
be transformed into technical model.

Terminus With Terminus, ODABA provides a tool that allows defin-
ing concepts as terminology model in advance. From the
documentation you can generate an ODABA object mod-
el, UML or documentation.

Class Editor

The object model can be generated from the terminology
model provided with Terminus. Definitions can be com-
pleted in the Class Editor, which allows defining struc-
tures, enumerations and extents.

Functional model The functional model allows implementing methods for
structures in different classes.

Class Editor The Class Editor supports the implementation of methods
for defined structures. Classes and methods are generat-
ed from documentation and can be implemented as C++-
functions or OSI-expressions.

Designer The GUI design includes the design of several project
resources as application, menus, windows and controls. It
provides also specific GUI context classes, which allow
reacting on GUI events.

Dynamic model The dynamical model allows defining user events and
reactions.

Causality Design The causality designer allows defining the dynamic mod-
el. Reactions and action sequences (scenarios) can be
defined for handling different events. The Causality De-
sign is supporting causal relationships on the database
level.

