01101001001110010101101011010
10010111011100010111010101010
11101100101001010110101010100
11010110100100111001010110101
10101001011101110001011101010
10101110110010100101011010101
01001100110100100111001010110

00101110101010101110110010100
10101101010101001100110100100
11100101011010110101001011101
11000101110101010101110110010
10010101101010101001100110100
10011100101011010110101001011
10111000101110101010101110110
01010010101101010101001100110
10010011100101011010110101001
01110111000101110101010101110
11001010010101101010101001100
11010010011100101011010110101
00101110111000101110101010101
11011001010010101101010101001
10011010010011100101011010110
10100101110111000101110101010
10111011001010010101101010101
00110011010010011100101011010
11010100101110111000101110101
01010111011001010010101101010
10100110011010010011100101011
01011010100101110111000101110
10101010111011001010010101101
01010100110011010010011100101
01101011010100101110111000101
11010101010111011001010010101
10101010100110011010010011100
10101101011010100101110111000
10111010101010111011001010010
10110101010100110011010010011
10010101101011010100101110111
00010111010101010111011001010
01010110101010100110011010010
01110010101101011010100101110
11100010111010101010111011001
01001010110101010100110011010
01001110010101101011010100101
11011100010111010101010111011
00101001010110101010100110011

ODABA

Database Utilities




I B Software-Werkstatt

run Software-Werkstatt GmbH
Winckelmannstrasse 61
12784 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web:  www.run-software.com

Berlin, June 2020



Contents

1 Introduction.........ccceeeriiiieuiiiiiiiiiiii e 5
Common Features........cccceevreveeuiiiiiiiieaiiiiirieisesiiiiesesssesenasss e eenaeneeeees 6
Run-time information..............covvvveeeeeviiiiiiiieiieieeeeeeeeeeeeeee 7
Configuration fileS............euvuuieeeeieiiiiieiiiiiiiieeeciiieieieeee e 11

3 Create new database........ccccccceeeeeieirereneeeniieeieesisceeie s eeee e 21

4 ODABA Server (Server)......cccceeeiiiiumuseesiiiieassiiieensessesiecesseesareasseannees 23
Server COmMMAaNAS......ooeeiiiiiiiiiiiieiiieeeeee e 26
Server SettingS..ovuuueiiiiieeieiiiiee e 32
Option file for Server.....oeuuweeeeieiieieeeeeeieeeeeeeieeee e 36

5 ODABA Server Service (ODABASEIVer)........cccecessueeerrreerennanaaneeees 37
ODABAServer Service SettingS.........oooeveviiieeeeieiiiiiiiiieieeeeiiiieeeeees 40
Option file for ODABASEIVEr.....cuuuiiiiieeeiiiieeeeeeieeeeeeeeeeeeeeeeeeenn 41

Setup Replication Database (DBReplication

RuNnNing SetupDB......ccuuuiiiiieeeeeeeeeeeeeeeeeeeeeeee e, 48
Defining data SOUIrCeS......ooivveeeeiiiiiiiieiiiiiiiee e 49
Defining Copy SEQUENCES. ..uuueuniiiiiiiiiiiiiieeiiiieeieieeeeeeeeeeeeeeeeeeeeeenn 51
Option file for SetupDB..........oieiiiiieiiiiiiiiiieiieieeeeeeeeee e 52
8 Database Copy (COPYDB)......cccceeiiiiiiiiiiiiiiiiieeinnnnsniiiiiisieeeeeeeeeenennanns 53
Running CopyDB........ooooiiiiiiiiiiiieie e 54
Defining data SOUrCeS.........oovvveveeeeiiiieieiiiiiiiiiiiieeeeeiee e, 55
Defining Copy SEQUENCES. ...uuuueiiiiiiiiiiiiiiiieiiicieieieieeeeeeeeeeeeeeeeeiaeenn 58
Replace optionS.........cuuueiiiiiiuiiiiiiiiiiieiiiiiiee i 59
Option file for COPYDB........uuuuueieieiiiiiiiiiiiieeeieiiieieeee e, 60
Running CopyReSDB........ccovvuueiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeeeeeeee, 62
Defining data SOUrCeS........oovvvvevveieiiiieieiiiieeiiiieieeeeeeeeeeeeeeeeeen, 63
Option file for COPYRESDB.......cooeeeiiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeaenn 66
Use Cases for COPYRESDB.....coovveeeeiiiiieiieiiiieeeeeeeieeeeeeeeeeeeeeeean 67

Running BackUupDB..........uiiiiieeeiiiiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeaeen 72
Option file for BaCKUPDB........uuiiiiieeeiiieiieieeeeeeeeeeeeeeee e 73
Running RestoreDB...........uiiiiiiiiiiiiieeieeieieee e 75
Option file for RestoreDB............oeeiiveeeiiiiiiieiiiiiiiieiieieeieeeeeieeeeeeeenne. 76
13 Check Database Consistency (CheckDB).......ccccccccceeeeiiiiiiieniiennnnnnn. 77
Running CheCkDB.......oooovveeeiiiiiiii i 78
Option file for CheCkDB..........cccvuuiiiiiiiiiiiiiiiiieeiiiieieieeeeeeeeeeeee 81
14 Reset pending key locks (ResetKeyLoOCKS).....cccooverreeuirenniieniennnnens 82

Database System Information (DBSysteminfo




16 Database Statistics (DBStatistiCS)........ccooccrerreeereiiiiiiiiiiciiineneeanesen, 84
17 Dictionary Statistics (DBDictStatistics).........cccceceeeereeeeiriicniiiieannnn.s 85
18 Version administration (DBVersion)............cccccceeciieeererieeeeeerieninneen. 86
19 Workspace Utility (DBWOrKSPaCe)...cceucuureisemerisinnaiaiisssnenneeeeeeiiaees 89
Defining data SOUrCES......ooivveeeeiiiiieiieieiiiiiie e 93
Option file for DBWOIrKSPaCE.....u.eeveeeeiiiiiiieeeiieieieeeeeeeeeeeeeeeeeen 95
20 ODABA Script Interface (OSI).........cccecumueeeceeeiiiiiiiiiiiiiiiieeiieeeeeeeaens 96
RUNNING OS ..ot 97
Defining data SOUrCeS........oovvvveveeeiiiieieiiiiieiiiiiiieeeeeeeeee e, 98
Option file fOr OSl....uuueeeeeiiiiiiiiiiiiiiieeeciiieieeie e, 99
21 ODABA Definition Loader (ODL)...........ccccesummeeererieeiiiiiiiiiiisiscnnes 100
RUNNING ODL..uuuuiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 101
ODABA Shell (OShell
RUunNNing OShell.......oooiiieeiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee e 104
OShell Command OVErVIEW. .......uuuueeeieiieiiiiiiiiieeeiiiiiiieieeieeeeeeeeeeianness 105
Defining data SOUrCes.........ooevevveeveuiiiieiiiiieeiiiiiieeeeieeeeeieeeeeeeen, 121
Option file for OShell......ovuuuueiiiiiiieiiiiieieeeeeiieeeeeeieee e 122
Simple stress test (StressTestS
Running StressSTestS. .. ..uueeieiiiiiiiiiiiiieeeeiieeeee e, 124
Defining data SOUrCes..........oevvvvevvuuicieieiiiiieeiiiiieeeeeieeeeeeeeeeeeen, 125
Option file for StressTestS. . e 127
24 Multiple Query Stress Test (StressTestM)...........ccceeeeeereeeeenrnnnsn... 128
Running StressTestM.......c..ueiiiiieeeeeiiiiiiiieieiiiieeeeieeeeeeeeeeeeeee 129
Defining data SOUrCeS........oovvvveeiiiiiieieiiiieieeeeieeeeeeeeeeeeeeeeeae 130
Option file for StressTestM...........oeeeiiieueeiiiiiieeeiiiiieeeeiiieieeeeeieean 132
25 License Utility (LIiCENCEe).......cceeuuuuueeeiiiiiiiiiiiiiiiiieeeenennnniieieeennneennans 133




ODABAN¢

Platforms

Interfaces

User Interfaces

1

Introduction

ODABANS is an object-oriented database system that al-
lows storing objects and methods as well as causalities.
As an object-oriented database, ODABAN® supports
complex objects (user-defined data types), which are
built on application relevant concepts.

ODABAN® applications are characterised by a high flex-
ibility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represen-
ted considerably better than in relational systems.

ODABAN® applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABANC applications a favourite possibil-
ity to solve highly complex jobs as come up in adminis-
trative and knowledge areas.

ODABANG supports windows platforms
(Windows95/98/Me, Windows NT and Windows 2000)
as well as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

ODABANS supports several technical interfaces:

= C++, COM as application
program interface (this al-
lows e.g. using ODABANG
in VB scripts and applica-
tions)

= ODBC (for data exchange with relational
databases)

= XML (as document interface as well as for
data exchange)

ODABANS provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABANCG provides a special ODABANG GUI
builder.



2 Common Features

Most of the ODABA tools are providing information via
an option file. Option files contain information about the
data source(s) and other run time parameters.

Most of utilities produce a protocol file that lists the ac-
tions performed when running the utility. Moreover, error
information is written into an error file.

The following sections describe the common structure of
option files for ODABA utilities and the way of using pro-
tocol and error information.



Run-time information

Process informa-
tion

Error information

Most of the ODABA utilities provide two types of run time
information. One is the process information listed in a
protocol file, the other is error information listed in the er-
ror list.

Process information is written to a file “protocol.lst’,
which is stored in a folder referenced in the TRACE-vari-
able in the option file or in the system environment.

Process information refers to objects copied or pro-
cessed in another way. Process information is also writ-
ten to the console. You can suppress writing process in-
formation to console when defining the SUPRESS_ER-
ROR variable in the utility section of the option file as:

SUPRESS_ERROR=YES

Most of the ODABA tools are providing information via
an option file. Option files contain information about the
data source(s) and other run time parameters.

Process information is structured as follows:
(2003/06/26 14:39:02) message.

Date and time are measures on the client side (when
running in client/server mode). The message contains
information about the action performed (as humber of in-
stances copied for a collection.

Information about errors encountered while running the
process are written to the “error.Ist” file, which is stored
in a folder referenced in the TRACE-variable in the op-
tion file or in the system environment.

Each error message contains information about date and
time, when the error was thrown, the sub-system (SDB)
detecting the error, the error type (Error, Warning, Mes-
sage, ...), error code (0005), class and function detect-
ing the error and a short verbal explanation of the error.

(2003/07/01 19:55:59) SDB -Error 0005:
eb_RootBase :: Provide
(Open Error on data base 'l:\oma2\ode.sys".).

More detailed information about the error is available

with the ErrorHelp utility or function, that provides a
more detailed error description (when available).

Error information can be displayed immediately when
setting the SHOW_ERRORS variable in the option file or
in the system environment.

SHOW_ERRORS=YES



Options and para-
meters

Quiet

Help

Progress

System output

This is intended mainly for testing purposes, since the
error message box is displayed immediately, when the
error occurs.

When calling a utility, options and parameters might be
passed to the program. Options are sort of keyword pa-
rameters preceded by a — or / character. Options may
contain an option value, which may be passed in one of
the following manners:

-l:odaba/oshell.ini
-l(odaba/oshell.ini)
-l=odaba/oshell.ini;

In the example above, | is the option name introduced by
-. Instead of —I, /l could also be used. The option value
is the path to the configuration file in this case.

There are some options, which can be passed to all utili-
ties and which are not mentioned explicitly when de-
scribing the utility.

In order to suppress program messaged, the quiet op-
tion might be passed (-q, -Q or --quiet). When passing
the quiet option, system output for the program will be
suppressed and no messages are written to the system
output area (e.g. console). Quiet does not suppress
messages created from within a program or script calling
Message() or Print() functions.

In order to get help information for calling a utility, you
may call the utility passing the help option (-h, -H or
--help). When passing the help option, no program mas-
sages will be displayed on system output.

lo order to activate default progress display, the
progress option (-p, -P or --progress) might be set in
the command line. This is the simplest way to activate
progress display for utilities not referring to a configura-
tion or ini-file.

In order to select a specific progress display type, you
may pass one of the supported display type values as
option value:

-p:percent

Normally, program massages are written to system out-
put area, which is the console for console programs and
the output area control for GUI applications.

In addition, program output might be written to a protocol
file, which has to be defined in the SystemlO option:

[SystemIO]
Protocol=temp/protocol.Ist

When passing the quiet option, output will still be written



Progress informa-
tion

automatic

percent

dots

rotator

time

Progress options

Distance

NewLine

to the protocol file when being defined.

Several utilities support progress information. The way
of displaying progress information depends on the set-
tings for the progress options in the SystemlO section.

[SystemlO]
Progress=percent (dots, rotator, time, none)

Usually, progress information is configured in the Sys-
temlO section in the configuration or ini-file passed to
the utility. Some utilities, however, do not refer to a con-
figuration file. In this case, progress options might be set
as environment variables, e.g.

SystemlO.Progress=dots
SystemlO.Progress.Distance=100

The following progress display types are supported.
Progress display type names are not case sensitive.

Automatic progress information display tries to select the
optimal way of displaying progress information, which
depends on the number of items to be copied.

Progress messages in percent display the estimated
percentage of work that has been done. The option will
be changed automatically to rotator, when maximum
number of items is not supported by the utility.

The dots-progress display just writes a series of dots.
Typically, dots are displayed, when a number of items
defined in the SystemlO.Progress.Modulo option has
been processed.

The rotator displays an rotating line in the system output
in order to show progress speed.

The elapsed time will be displayed on system output
area.

In addition, some options might be set in order to alter
progress information. Option names are case sensitive.

The value determines the frequency of displaying the
progress message. In case of percentage, it is the dis-
tance between two percent values (e.g. displaying a
message each 5 percent). For all other progress display
types it is the number of items to be passed before dis-
playing the next progress message (e.g. display a
progress message each 100 records copied).

Default: 10

Display messages on the next line. When this option is
set to false (NO), each progress message will be dis-
played on the same line deleting the content of the previ-
ous message. The option will be ignored, when the dis-
play type is dots.



Remaining

Trace

Count

Default: NO

In order to display the estimated remaining time in after
the type specific progress information, the option might
be set to true (YES). The option will be ignored, when
the display type is dots.

Default: NO

For displaying progress messages in the error log in ad-
dition, this option should be set to true (YES).

Default: NO

When the number of items to be processed cannot be
determined by the program, an estimated number of
items can be set as progress options. This allows config-
uring specific processes by passing the estimated num-
ber of items to the function.

Default: 0



Configuration files

Sections

SYSTEM

SystemlO

utility

Data sources

General structure

Most ODABA utilities are controlled by means of con-
figuration or ini-files. Configuration files have a com-
mon structure, which may differ a little bit from utility to
utility. The main task of a configuration file is defining
data sources used in the application. Moreover, it
provides system parameters as well as utility control
information.

Options are read usually from the configuration file.
Options not defined in the configuration file are read
from the system environment. Thus, you may set (or
export) environment variables as default values on
your computer (e.g. for the TRACE variable or the
data catalog), which might be overwritten by configura-
tion file variable settings.

Each configuration file describes a number of standard
or utility depending sections.

The system section contains information for the sys-
tem as data catalog location, location for error pro-
tocol, system dictionary etc. Usually (but not necessar-
ily) the system section is defined on top of the option
file.

System input/output options allow controlling the beha-
viour of writing messages to the system output area
and receiving information from there. System
input/output is directed to console for console applica-
tions and to designated controls in GUI applications.

The utility section is a section that has the same name
as the utility called. It contains utility specific runtime
information. In many cases (when the utility is working
with exactly one data source) the utility section acts as
data source section, too.

Usually a utility has one or more data source sections.
Each data source section defines the location for a
dictionary and a database. Moreover, it may contain
many additional data source information.

Information for different purposes is stored in different
sections of the configuration file beginning with a sec-
tion name:

[SECTION_NAME]

The section name is followed by one or more section
options defined as:

OPTION_NAME-=string



Local and
client/server mode

[SYSTEM]

DICTIONARY

SERVER_URL

The lines defining option names must not contain any
comments. Comments can be inserted on additional
lines, e.g. as

; this is a comment line

Configuration files can be configured for local or client
server mode. When running in client server mode,
database paths for database and dictionary are
defined as server paths (enclosed in %...%). The
server maps the symbolic names to server paths when
opening the database.

In principle it is possible to run a tool in a mixed envir-
onment, i.e. using local database for the SYSTEM
section and client/server for the utility section. This
will, however, cause problems when writing messages
to the error log, since the message text cannot be re-
solved in this case. Hence, it is suggested to run an
application either in local or in client mode.

The system section refers to database system inform-
ation. The minimum required is the DICTIONARY ref-
erence to the system dictionary. When running the ap-
plication with a system dictionary stored on the server,
server name and a port number have to be defined as
well.

The path for the system dictionary usually refers to the
ode.sys database in the installation path. When you
receive strange error messages the reason can be an
invalid path for the system database.

DICTIONARY=C:\ODABA\ode.sys

When running the system dictionary from the server
the option refers to a symbolic database on the server:

DICTIONARY=%SYSTEM_BASE%

In a client server environment you may run the system
dictionary also on your local machine. In this case you
need to define the DICTIONARY option, only.

This option becomes necessary only when running in
a client server environment (running an object server).
In this case it should refer to the ODABA server name
or its TCP/IP address.

SERVER_URL=DBServer



SERVER_PORT

TRACE

[SystemlO]

Protocol

Suppress

[Progress]

This option becomes necessary only when running in
a client server environment (object or replication
server). In this case the port number must be identical
with the port number passed to the server when start-
ing it.

This variable is only required in connection with the
SERVER_URL variable.

SERVER_PORT=6123
Default: 6123
With this option the location for the error log can be
defined. Often, this value is set in the system environ-
ment. It is, however, also possible to define the loca-
tion in the configuration file.

TRACE=C:/temp

At the location defined in the TRACE variable an er-
ror.Ist file is created that contains a detailed error log.
This file should be checked in case of errors on the
server side.

Default: Value for TRACE environment variable.

System input/output options allow controlling the beha-
viour of writing messages to the system output area
and receiving information from there. System
input/output is directed to console for console applica-
tions and to designated controls in GUI applications.

Normally, program massages are written to system
output area, which is the console for console programs
and the output area control for GUI applications.

In addition, system output might be written to a pro-
tocol file. When defining a complete path to a protocol
file, system output will be printed to this file, too.

Protocol=ODABA\output.txt

In order to suppress program output to the system out-
put area, the suppress option might be set to true
(YES).
Default: NO
Several utilities support progress information. The way
of displaying progress information depends on the set-
tings for the progress options in the SystemlO section.
[SystemIO]
Progress=display _type
The Progress section is a subsection of the Syste-
mlO section. Usually, progress information is con-

figured in the SystemlO section defined in the config-
uration or ini-file passed to the utility. Within an ini-file,



Distance

Remaining

subsections are not supported directly and have to be
defined by preceding section names:

Progress=dots
Progress.Distance=100

Some utilities, however, do not refer to a configuration
file. In this case, progress options might be set as en-
vironment variables, e.g.

SystemlO.Progress=dots
SystemlO.Progress.Distance=100

The progress display types are not case sensitive. The
following display types are supported:

automatic Automatic progress information display
tries to select the optimal way of displaying
progress information, which depends on
the number of items to be copied.

percent  Progress messages in percent display the
estimated percentage of work that has
been done. The option will be changed au-
tomatically to rotator, when maximum num-
ber of items is not supported by the utility.

o
o
=
[

The dots-progress display just writes a se-
ries of dots. Typically, dots are displayed,
when a number of items defined in the
SystemlO.Progress.Distance option has
been processed.

rotator The rotator displays an rotating line in the
system output in order to show progress
speed.

ime The elapsed time will be displayed on sys-
tem output area.

The value determines the frequency of displaying the
progress message. In case of percentage, it is the dis-
tance between two percent values (e.g. displaying a
message each 5 percent). For all other progress dis-
play types it is the number of items to be passed be-
fore displaying the next progress message (e.g. dis-
play a progress message each 100 records copied).

Distance=100
When not defining the Distance option, an optimal distance
value is determined by the system.
In order to display the estimated remaining time in
after the type specific progress information, the option
might be set to true (YES). The option will be ignored,
when the display type is dots.

Default: NO

—



NewLine

Trace

Count

[utility]

PROJECT_PATH

ODABA_PATH

PROGPATH

MAINTENANCE _
PROCESS

Display messages on the next line. When this option is
set to false (NO), each progress message will be dis-
played on the same line deleting the content of the
previous message. The option will be ignored, when
the display type is dots.

Default: NO

For displaying progress messages in the error log in
addition, this option should be set to true (YES).

Default: NO

When the number of items to be processed cannot be
determined by the program, an estimated number of
items can be set as progress options. This allows con-
figuring specific processes by passing the estimated
number of items to the function.

Default: 0

The utility section refers to tool specific information. It
starts with a section name that is identical with the util-
ity name (the name of the executable for the utility
without .exe extension). Since utility and database
system usually reside in different paths, the utility sec-
tion contains some standard options that should be
provided in each utility section.

This option should refer to the project path when the
project has created a context DLL.

PROJECT_PATH=C:\ODABA\Sample
This option should refer to the ODABANC installation
path on the workstation.

ODABA_PATH=C:\ODABA
This variable should refer to the application path on
the workstation. When not being defined it is set to the
path from which the executable for the tool has been
loaded.

PROGPATH=C:\ODABA
Running a process as maintenance process will dis-
able automatic time stamp settings when writing data-
base objects. This option is set automatically for some
database utilities as CopyDB or CopyResDB.

MAINTENANCE_PROCESS=YES
Beside these options the tool section may contain vari-
ables with specific meaning for the tool. In addition, it
may contain the definition of a data source, which is
typically the case for tools running with one data
source, only.



[DataSource]

DICTIONARY

DICTIONARY_TYPE

Data source sections may be defined explicitly or im-
plicitly with the utility section. Each data source section
is introduced by the data source name as section
name. The minimum information for a data source is
the dictionary and the database location.

The path for the utility dictionary usually refers to the
application dictionary.

DICTIONARY=C:\ODABA\Sample\Sample.dev
When running the dictionary from the server this vari-
able should refer to

DICTIONARY=%SAMPLE_DICT%
which is a symbolic name for the application dictionary
defined as database file in the server file catalog.

When referring to a dictionary or resource database as
database the system dictionary (ode.sys) must be
defined as dictionary.

The dictionary database can be stored in different
data storage formats supported by ODABA.

DICTIONARY_TYPE=ODABA
ODABA storage format is the default because it is the
most efficient format for storing dictionary informa-
tion. The following formats are supported:

ODABA - ODABA database format

XML - XML file

ORACLE - ORACLE database

MS_SAQL - Microsoft SQL database

ODBC - Any relational database connected by ODBC

XSD - XML schema

All formats except XSD are supported ODABA data
storage formats, which simply store ODABA data in
the requested format. XSD is an XML format, which
contains an XML schema definition. The Schema
definiton may contain ODABA  extensions

(http://www.odaba.com/OXMLExtensions.xsd)


http://www.odaba.com/OXMLExtensions.xsd

DATABASE

DATABASE_TYPE

SERVER_URL

The path for the application database refers to the
database created for the application.

DATABASE=C:\ODABA\Sample\Sample.dat
When using a local database the database should
refer to a local database on your machine or another
drive available in the network. When sharing data you
should provide a database on a global machine or on
a server.

For creating a new database you need to refer only to
a new database name on a valid path where you are
allowed to created and write new files.

When running the utility on a server, this variable
should refer to the application database on the server,
e.g.

DATABASE=%SAMPLE_DAT%

which is a symbolic name for the database defined in
the file catalog on the server.

In a client server environment you may refer to diction-
ary or database location by means of symbolical path
names (as %SampleBase%). In this case you must
define the serve name and port number.

The database can be stored in different data storage
formats supported by ODABA.

DATABASE_TYPE=ODABA
ODABA storage format is the default because it's the
most efficient format for storing complex data
strucrues. The following formats are supported:

ODABA - ODABA database format

XML - XML file

ORACLE - ORACLE database

MS_SQL - Microsoft SQL database

ODBC - Any relational database connected by ODBC
Relational database formats (ORACLE, MS_SQL and
ODBC) require an ODABA relationship and transaction
manager (RTM), which allows managing relationships
and ftransactions efficiently. The RTM is a small
ODABA database, which contains derived information
from the original data. Since the RTM-Database does
not add information to the underlying data, it can be re-
constructed from the relational database at any time.

The server name refers to the ODABA server name or
its TCP/IP address.

SERVER_URL=server_name



REPLICATION_
SERVER

SERVER_PORT

OBJECT_SPACE

ACCESS_MODE

NET

ONLINE_VERSION

VERSION

For running a replication server, this variable holds the
server name (instead of SERVER_URL). The variable
refers to the replication server name or its TCP/IP ad-
dress.

REPLICATION_SERVER=server_name

This variable is only necessary when running in a cli-
ent server environment (object or replication server).
In this case the port number must be identical with the
port number passed to the server when starting it.

This variable is only required in connection with the
SERVER_URL or REPLICATION_SERVER variable.

SERVER_PORT=6123
Default: 6123

Often, a database consists only of the root object
space and no object space must be defined.

In some cases the database is, however, build of a
number of hierarchical object spaces where each ob-
ject space may contain a whole universe of object in-
stances. Object spaces are referenced in the defined
hierarchy. In order to access a subordinated object
space, a path to the object space must be defined in
the data source.

Default: none (root object space)

OBJECT_SPACE=section1.part2

The access mode defines whether the database will
be used in write/update mode or read only.

ACCESS_MODE=Write
This option is required when running the database in a
file server environment for using the database with
more than one user (multi-user access).

NET=YES
This feature is supported under Windows, only. Under Linux,
YES is used, always.
This value enables online-versioning feature for the
data source, which allows automatic upgrades to
higher database model versions.
ONLINE_VERSION=YES
When this variable is not set or set to NO the applica-
tion will not run with newer database versions.

Internal database version number when the database
is using version features. The version number allows
seeting up the database according to a historical state.

VERSION=version

Default: current version



SCHEMA_
VERSION

ENABLE_
CONTEXT

WORKSPACE

[DATA_CATALOG]

DICTIONARY

Database version for the dictionary. When setting up
an older version of the database you might run this
with the appropriate dictionary version used at this
time. Usually the system tries to detect the proper dic-
tionary version.

SCHEMA_VERSION=version
Default: Version of the dictionary database

Specific object behaviour (e.g. when reading or writing
objects) can be disabled. This option should be set to
NO for database maintenance purposes, since context
functions may cause errors in this case.

ENABLE_CONTEXT=YES | NO

Default: YES

The workspace option defines the basic workspace to
be used by the utility. The utility can open workspaces
on top of the base workspace but not below. The
defined workspace is either the base for the operation
(when passing a workspace name) or the workspace
for running the operation (when no workspace name
has been passed).

A workspace can be defined only when the workspace
feature is enabled. When not defining a workspace the
database is opened directly.

Default: none

Instead of explicitly defining the data source you may
refer to a data source definition in a data catalog. The
data catalog might be a local data catalog or a catalog
defined on the server.

When using a data catalog the data source can simply
be defined as

DATA_SOURCE=Sample

Referring to a data catalog, the server (in case of cli-
ent/server applications) or the application option file (in
case of local applications) must define a [DATA_CATA-
LOG] section that defines the location of the data
source, or it must contain a section with the name of
the data source.

The dictionary for the catalog is usually the system
dictionary ode.sys, but it is also possible to use the
project dictionary when the database contains more
than the DataSource definitions.

DICTIONARY=C:/ODABA/ode.sys



DATABASE

ACCESS_MODE

NET

The database for the catalog is usually a separate
maintenance database for the application or a specific
data catalog database.

DATABASE=C:/ODABA/Server.cat

When you are running several applications on the server we
suggest using a specific catalog database for the server.
Usually the data catalog is opened in read mode, only.
If you want to allow update operations in the catalog
(e.g. defining new data sources) you might run the
data catalog in write mode as well:

ACCESS_MODE=Read | Write
Since you are running the catalog usually in a network
environment you should enable NET always:
NET=YES

This feature is supported under Windows, only. Under Linux,
YES is used, always.



Create new database

New databases are created automatically (when not yet
existing) when starting an application with write access
to the database. When running multiple dataset data-
bases, the database structure must be defined in ad-
vance (Class Editor) before creating the database.

Automatic data- A database will be created automatically when running

base creation an application that refers to the database as output data-
base (write access). In this case you need to define the
database path in the option file, which is passed to the
application.

...lapplication ... ini_file ... ]

Usually, the option file is passed as parameter to the ap-
plication. The option file may refer to one or more data
sources. The database is referenced in the data source
as DATABASE (or DATDB in some older applications).

When a new database is created a message pops up
notifying that a new database will be created. The mes-
sage appears on the command line for command line
applications or as a message box otherwise.

Data source Depending on the application the data source is marked
in the option file by a section name that refers to the
name of the data source (e.g. [DATA_SOURCE1]). Ap-
plications based on a single data source use the applica-
tion name as section name in several cases.

The data source can be defined also in a data catalog.

DICTIONARY For defining a new database the dictionary for the data-
base must be defined in the database. Older applica-
tions refer to the dictionary as RESDB.

DICTIONARY=C:/ODABA/Sample.dev

DATABASE The database variable defines the path to the database.
The folder that contains the database must point to a
valid folder on the disk.

DATABASE=C:/ODABA/application.dat

Page 21 of 133



ACCESS_MODE

PLATFORM_
INDEPENDENT

A new database will be created only, when the access
mode is set to Write.

ACCESS_MODE=Write

Usually, databases differ in the internal format that is
stored on the disc, depending on the platform, where the
database has been allocated. The consequence is, that
a database cannot be copied as file e.g. from a SUN-sta-
tion to an INTEL platform. To create a platform inde-
pendent database that can run on any machine, you
must set the PLATFORM_INDEPENDENT variable to
YES:

PLATFORM_INDEPENDENT=YES | NO

Platform independent databases can be copied by
simple file copy from one machine to another, independ-
ent on the hardware used on the machines. When this
variable is not set to YES, databases must be converted
using the DBCopy utility when hardware the platform for
the database changes.

Page 22 of 133



Object Clients

ODABA Server (Server)

When running ODABA applications in client/server mode
you need to setup a server. Besides instaling ODABA
on the server machine, there are other steps necessary
as catalog databases and configure client applications
for running on server.

ODABA server supports two client types, i.e. the server
can be accessed as object server or as replication
server.

ODABA server access is faster in slow network environ-
ments, but requires administration resources in order to
setup the server or service to run the server. Running
applications on an ODABA server allows balancing re-
sources between client and server. Business logic can
be executed partially on the server and partially on the
client side. Still, the database via an ODABA server is in-
stance oriented, i.e. normally one server access per in-
stance to be read is required. Buffered access and ac-
cess via views may reduce the traffic load, but requires
more afford in building the applications. You may run
ODABA server via the internet, but usually, transfer
speed is to low and it is more appropriate running an
replication server in this case.

In contrast to the file server, the ODABA server sends
update, delete and create events to all (registered) client
property handles, which may react directly on those
changes notified by the server. Clients may also sent ap-
plication events and messages to other clients.

For enabling ODABA server access, the ODABA server
location must be defined in the data source location and
databases are referenced by symbolic names assigned
by the administrator.

Accessing the server as object server provides access to
persistent object instances for the object client. When
running an object client, the server also executes busi-
ness rules provided in appropriate context classes. Also
queries (or access paths) are executed completely on
the server side.

Object clients require a fast network and a powerful
server.

Page 23 of 133



Replication
Clients

Start Server

port_number

ini_file

Replication clients do have a local copy of the database.
The server receives updated from the clients, always,
when an internal transaction has been finished (e.g. cre-
ating a new object instance). Transactions from each cli-
ent are sent to all other clients that did not yet receive
those transactions.

Replication clients need a replication database, which
can be provided running the DBReplication utility.

When the client is not up to date, the system tries to
transfer a complete backup of the database to the client.
The backup must be located in the same folder as the
database ending with .ozi (ODABA backup format).
When the database is older then 2 days, the system au-
tomatically creates a new backup. It is suggested to run
an automatic service, which creates a database backup
each day to reduce the server burden at run-time.

You can run the Server on a MS Windows machine or
on a UNIX platform. The ODABANC server has been in-
stalled in “(installation)/bin” directory (UNIX) or in the
ODABANG installation path (MS Windows). For running
the server you start the server with an option file and a
port number.

Server port_number ini_file [-D] [-q] [-h]

The same port number must be used later to connect to
the server from the client.

The port number defines the communication port that is
used for client connections.

Default: 6123

The server can connect to several databases (applica-
tions). The databases for different applications are de-
fined in the file catalog. This and other information is de-
fined in the configuration or ini-file.

You can run the server as service (demon) or in “Debug”
mode. Pass the Debug option as third parameter to run
the server in Debug-mode.

UNIX: In both cases you must ensure that the all li-
braries are stored in the default library path or you have
to add the library path from the installation
“(installation)/lib” to the LD_LIBRARY_PATH.

Page 24 of 133



Stop Server

For stopping the server you just press “enter” when run-
ning in “Debug” mode. When running the server as De-
mon you just call

...Iserver -kill ini_file

ini_file is the complete path pointing to the server option
file that has been used for starting the server.

Page 25 of 133



Server Commands

server_name

port_number

parameter

DBCheck

dict_path
db_path

Several server commands have been provided that can
be used as command line tools in DOS or UNIX. Server
commands act as clients and can be started from any
computer in the network that has installed server com-
mands or on the server itself.

All Commands are called like

....command server_name port_number parameter

is the name of the machine the server is running on. The
port number must be identically with the port number
that has been passed for starting the server.

The port number must be identically with the port num-
ber that has been passed for starting the server.

Here, command specific parameters can be passed.

The DBCheck server command works similar as the
CheckDB utility, but in client server mode. It allows
checking a server database and produces a list with
database problems.

....DBCheck server_name port_number

dict_path db_path

[-C:checks] [-S:srce] [-T:type] [-R]

[-W] [-K:time]
In contrast to the CheckDB utility, the DBCheck server
command does not require an option file. Instead, the
administrator must know the exact location of dictionary
and database on the server, which are passed as para-
meters to the command.

When running database checks, clients accessing the
database to be checked are stopped, i.e. clients access-
ing the database must finish before DBCheck starts or
will be killed by DBCheck. During check, it is also not
possible to start new clients on the server.

The following topics contain a short description of the
DBCheck parameters and options. More details are de-
scribed in the CheckDB utility. .

Exact dictionary location on the server.
Exact database location on the server.

Page 26 of 133



C:checks

-S:srce

-T:type

-K:time

The list of check options determines the type of checks
to be performed:

| Inverse reference check
X Index check
G GUID check

Default: -C:IXG (running all checks)

The order of these options does not play any role. You
may also use capital or small letters except for the option
key —C:

The source describes a property path to the collection or
set of instances to be checked.

Default: -S:* (check the whole database)
The type defines the source type:

Clollections] check all collections referenced by the
source. Since the collection check makes
sense for | and X, only, the GUID check
(G) is ignored when being defined to-
gether with Type C.

I[nstances] Check all instances (or the references for
all instances referenced in the source or
in the database, when no source is
defined.

Alll] Check instances and collections.
Default: -T:all (check instances and collections)

The kill option allows stopping clients after a given time
interval (time in seconds). When a time interval has been
defined, the clients are informed, that the client will be
stopped after ‘time’ seconds.

When passing the —K option, only, the clients accessing
the database to be checked are stopped immediately
and without warning.

When not passing the kill option, DBCheck will terminate
with error when there are active clients using the data-
base to be checked.

Passing the repair option causes CheckDB repairing the
problems detected, if possible.

For showing warnings in the protocol, the warning option
must be set.

Page 27 of 133



DBBackup

db_path

location

wait

DBRestore

When running backup, update clients accessing the
database to be backed up are paused while running
BackupDB, i.e. all updating transactions are paused until
backup has finished.

The DBBackup server command works similar as the
BackupDB utility, but in client/server mode. It allows cre-
ating a backup file from a database.

....DBBackup server_name port_number
db_path [ location ] [ wait ]

In contrast to the BackupDB utility, the DBBackup server
command does not require an option file. Instead, the
administrator must know the exact location of the data-
base on the server, which is passed as parameter to the
command.

When running backup, update clients accessing the
database to be backed up are paused, i.e. all updating
transactions are queued until backup has finished.

The following topics contain a short description of the
DBBackup parameters and options. More details are de-
scribed in the BackupDB utility.

The database path defines the database location on the
server, i.e. the path must be a valid server path.

The location is the path where the backup file will be
stored. The location must be a valid path on the server.

This is a timeout value in seconds for closing committing
transactions. When there are (long) transactions not able
to commit in the defined timeout interval, backup termin-
ates with an error.

Usually, the transaction timeout can be limited to a few
seconds, because the timeout applies to committing
transactions, only. New commits will be blocked until the
backup has finished.

Default: 1

The DBRestore server command works similar as the
RestoreDB utility, but in client/server mode. It allows
restoring a backup file to a database.
....DBRestore server_name port_number
db_path [ location ][ ktime ]
In contrast to the RestoreDB utility, the DBRestore

Page 28 of 133



db_path

location

ktime

KillAll

server command does not require an option file. Instead,
the administrator must know the exact location of the
database on the server, which is passed as parameter to
the command.

When running database restore, clients accessing the
database to be restored are stopped, i.e. clients access-
ing the database must finish before restore or will be
killed by DBRestore. During restore, it is also not pos-
sible to start new clients on the server.

The following topics contain a short description of the
DBRestore parameters and options. More details are de-
scribed in the RestoreDB utility. .

The database path defines the database location on the
server, i.e. the path must be a valid server path.

The location is the path where the backup file has been
stored. The location must be a valid path on the server.

When running DBRestore in client/server mode, the
database must be available exclusive for DBRestore, i.e.
no clients must access the database. The kill time option
allows stopping clients after a given time interval (time in
seconds). When a time interval has been defined, the cli-
ents are informed, that the client will be stopped after
‘ktime’ seconds.

When passing 0 for the ktime parameter, the clients ac-
cessing the database to be restored are stopped imme-
diately and without warning.

When not passing the ktime parameter, DBRestore will
terminate with error when there are active clients using
the database to be restored.

The KillAll command will kill all clients. The KillAll com-
mand waits ‘timeout’ seconds (default: 300) before killing
all clients. A message is sent to all clients (ODABA 8.0)
immediately before the clients are killed.

.../KillAll server_name port_number [ timeout |

Kill all sends a message to all active clients (ODABA
8.0) that the server will shut down within the time defined
in the ‘timeout’ parameter. New clients cannot login any-
more. A warning is sent to the clients that the client is
going to be killed.

When clients are terminated abnormally no message

Page 29 of 133



KillClient

ShowClients

SendMessage

can be sent. The result is that the server waits for the cli-
ent to receive the kill message. For killing dead clients
without message you can pass 0 as timeout value.

The KillClient command can Kill a specific client. The Kill-
Client command waits ‘timeout’ seconds (default: 300).

.../KillClient server_name port_number client _id
[ timeout ]

When the client is running several applications on his
machine all applications are cancelled. The client_id is
the number (id) for the client shown in the ShowClients
command. A warning is sent to the client that the client
is going to be killed.

When clients have terminated abnormally no message
can be sent. The result is that the server waits for the cli-
ent to receive the kill message. For killing dead clients
you should pass 0 as timeout value to avoid sending a
message to the client.

The ShowClients command will list all active clients. It
will also list the time for last communication and other
statistics.

.../ShowClients server_name port_number

The ShowClients command lists all clients with the cur-
rent ID-numbers.

The SendMessage command will send a message to a
specific client or to all active clients.

.../SendMessage server_name port_number [ client ]

Sending messages will work properly only when the ap-
plication is reacting on messages sent from the server.

Page 30 of 133



StartPause

StopPause

ShutDown

When pausing the server no more transactions can be
committed until pausing the server is stopped (Stop-
Pause). The server can pause only after finishing all run-
ning transaction commits. If any commit is still running
after five minutes or a given number seconds (time_out)
the server will not pause (error 323).

The ...Pause commands can be used for keeping the
database in a consistent state while backing up the data-
base without closing the server. Pause commands
should not be used when running long transactions as
large imports or database reorganizations.

Transactions will not be committed anymore after paus-
ing the server. The timeout interval for committing trans-
actions is 10 minutes. When not being able to start com-
mitting the transaction within the time interval the trans-
action is cancelled.

Any application may access the database in the pause
state as long as not writing to the database, i.e. as long
as not storing transactions to the database.

.../StartPause server_name port_number [ time_out ]

When the server cannot pause after the given time_out
interval or 5 minutes the command stops without paus-
ing the server. For allowing storing data to the database
again you must use the StopPause command.

This command stops pausing the server and reactivates
the server, which allows committing further transactions
and storing data to the database.

.../StopPause server_name port_number

The command starts the server shut down. When begin-
ning to shut down the server, no more transactions can
be committed. The server tries to finishing all running
transactions. If any transaction is running after five min-
utes or a given number seconds (time_out) the server
will cancel those transactions (error 323).

To ensure database consistency before shutting down,
you may run the StartPause command before calling
ShutDown.

.../ShutDown server_name port_number
[ time_out ]

Page 31 of 133



Server Settings

[SYSTEM]

DICTIONARY

PROGPATH

ODABA_ROOT

TRACE

[SERVER]

Server settings are defined in a server option file. The
server option file contains four sections for describing
catalogs and files as well as run-time parameters for the
server.

The system section contains setting allowing the system
to run properly.

Points to the system dictionary (ode.sys). If this path is
not defined correctly the system is not able to display ex-
planatory error messages, Instead you will get only error
numbers and location.

DICTIONARY=C:/ODABA/ode.sys

Contains the location from which the server is running.
Some functions need this location for extended services.

PRIGPATH=C:/ODABA

Contains the location where the ODABA system resides
(ODABA installation path). Some functions need this loc-
ation for extended services.

ODABA_ROOT=C:/ODABA

Here the location for the error log can be defined. Usu-
ally this value is set in the system environment. It is,
however, also possible to define the location in the op-
tion file.

TRACE=C:/temp

Under the location defined in the TRACE variable an er-
ror.Ist file is created that contains a detailed error log.
This file should be checked in case of errors on the
server side.

Default: Value for TRACE environment variable.

The server section contains several option variables
controlling the behavior of the server.

The server section contains a location for storing the
server process identification number when running the
server (SERVERPID) as demon process and other server
options.

This section may also contain additional option variables
that are referenced in the context-library (business rules)
associated with the object model. If the context library

Page 32 of 133



SERVERPID

REQUEST_
TIMEOUT

MAX_BUFFER_
SIZE

DSC_Language

[CACHE]

IGNORE_
CACHE_ LOCK

SIZE

RELEASE

refers to prefixed option variables, appropriate sections
have to be added to the server's configuration or ini-file.

Location to the path for storing the server’s PID when
running the process as demon.

The timeout interval defines the time the system will wait
until a server request will be cancelled. Timeout intervals
are used in order to limit locking requests from clients,
which may have been stopped working.

Default: 600 (seconds).

When accessing data in block mode the number of
blocks requested by the application program might con-
flict with optimal package sizes. To synchronize the
server with the optimal package size you can set the op-
timal network package size as buffer limit for block ac-
cess mode.

Default: 0 (no restriction).

This is the language for displaying system messages.
System messages can be provided in different lan-
guages. When this variable is not set, no text is dis-
played for system messages, but an “Undescribed Error
...” message is displayed, instead.

Default: English

Activating the cache requires a [CACHE] section in the
option file that is passed when starting the server.

The server allows defining only one cache section that
applies on all data bases opened by the server.

To open the database regardless of the state of the
cache lock flag you must set this variable to YES.

Default: NO

The maximum cache size is passed in megabytes in the
SIZE variable. The size variable must be set to activate
the cache.

Default: 0 (cache inactive).

When the maximum cache size is reached the cache will
be reorganized by removing entries not recently used.
The size of area to be released in the cache is the per-
centage of area that will be released.

Default: 25.

Page 33 of 133



CHECK

INTERMIDIATE

STATISTICS

CONNECTIONS

[DATA_CATALOG]

DICTIONARY

The interval in seconds for checking the cache for up-
dates. This value must be set to enable the write cache.

Default: 0 (write cache disabled)

High check values will improve the performance but re-
duce the security since modifications that are stored in
the cache only will get lost when the system crashes for
some reason. Suggested check values are between 60
and 300 seconds.

To avoid risks when writing back updates from the cache
to the disc the cache can be written to an intermediate
file before being stored to the database by defining a
path for writing an intermediate file.

Default: “” (direct write to database).

You may request cache statistics setting this variable to
YES.

Default: NO (no statistics created).

Caching connections is a feature supported in order to
increase performance for stateless applications as web
applications. In order to allow connection caching, this
option has to be set to YES.

Default: NO (connection cache not supported).

ODABANC allows registering data sources in a data cata-
log. This is usually stored in a maintenance database
(e.g. Sample.mnt). Defining data sources in a data cata-
log makes data access easier and more flexible, since
the administrator can define the access parameter for
each data source.

When using a data catalog, clients do not refer to dictio-
naries and databases but to catalog entries, instead
(e.g. DATA_SOURCE=Sample).

When running the server with data catalog client and
server must refer to the same catalog entries.

The dictionary for the catalog is usually the application
resource database, since the maintenance may contain
also application specific resources,

DICTIONARY=C:/ODABA/Sample.dev

You can, however, also refer to the system dictionary (ode.sys)
if you define only the catalog in the database.

Page 34 of 133



DATABASE

ACCESS_MODE

NET

[FILE_CATALOG]

The database for the catalog is either the maintenance
database for the application or a specific data catalog
database.

DATABASE=C:/ODABA/Server.cat

When you are running several applications on the server we
suggest to use a specific catalog database for the server.
Usually the data catalog is opened in read mode, only. If
you want to allow update operations in the catalog (e.g.
defining new data sources) you might run the data cata-
log in write mode as well:

ACCESS_MODE=Read | Write

Since you are running the catalog in a network environ-
ment you should enable NET always:

NET=YES

This feature is supported under Windows, only. Under Linux,
YES is used, always.

The file catalog allows defining file variables that can be
referenced in the client data sources or in the data cata-
log. When running the system with a data catalog the file
catalog is usually part of the data catalog. You can, how-
ever, provide the file catalog in the server ini-file as well.
When not using the data catalog you must define the file
catalog in the server ini-file.

The file catalog contains a number of file variable defini-
tions. Each file variable consists of a variable name and
the file location.

File_variable=path

The location (path) must be defined in a way that allows
the server to locate the file correctly. File variables can
be referenced in data source definitions as %file_vari-
able%:

DICTIONARY=%SYSTEM_DICT%

In this case the file variable SYSTEM_DICT referenced
in the client application will be resolved to the complete
path defined for the file variable in the server’s ini-file.

The file catalog should at least contain the following
definition:

SYSTEM_DICT=.../ode.sys  (system dictionary)

Page 35 of 133



Option file for Server

Samples

This is an example for a typical Windows server option
file running without data catalog (minimum configuration)
[SYSTEM] system section

DICTIONARY= C:\ODABA\ODE.SYS
ODABA_PATH=C:/ODABA

PROGPATH=C:/ODABA

[SERVER]
TRACE=C:\temp
TIMEOUT=600

[FILE_CATALOG]

SYSTEM_DICT=C:\ODABA\ode.sys
SAMPLE_DICT=C:\ODABA\Sample\Sample.dev
SAMPLE_DAT=C:\ODABA\Sample/Data\Sample.dat
You will find a sample for a server option file in the
ODABA installation folder under MetaServer.ini.
Samples for server command scripts are provided in the
installation folder under the command name.

Page 36 of 133



Register Service

port_number

Ini_file

3 ODABA Server Service (ODA-

BAServer)

Running an ODABA server under Windows (NT, 2000 or
XP) as service requires the registration of this service.
You may register any number of ODABA Database ser-
vices for running servers for different applications (via
different ports). Since an ODABA Server may serve any
number of applications, you may, however, serve all ap-
plications with only one server, as well.

In UNIX environments you may use the server demon in-
stead, which runs the server as a demon process in the
background.

For registering the server on a Windows Server ma-
chine, you need to run the ODABAServer program.

.../ODABAServer —I ini_file port_number

The port number defines the communication port that is
used for client connections. The same port number is
used later to connect the client to the server.

Default: 6123

The option file contains the name and the description of
the service and the definition of the data and file catalog
(see ODABA Server). Registering with different inifiles
containing different service names allows registering dif-
ferent ODABA servers as service.

Page 37 of 133



Configure the ser-
vice

Startup type

Recovery

Actions

After installing the service you may configure the service
with the Windows Service Comtrol Manager.

Open the Services Control Manager by:
1. Windows 2000 Professional:

Right-click My Computer on the desktop, and then
click Manage. In the dialog box that appears, ex-
pand the Services and Applications node.

2. Windows 2000 Server:

Click Start, point to Programs, click Administrative
Tools, and then click Services.

3. Windows NT version 4.0:
Open this Services dialog box from Control Panel.

You should now see your service listed in the Services
section of the window. Select your service in the list,
right-click it, and then click Properties.

The Startup type is set to ‘Manual’ after installation,
which requires an administrator action to start the ser-
vice. You may change this option to ‘Automatic’, which
causes the system to start the service when starting the
system.

On the ‘Recovery’ sheet of the properties form you may
change the failure reactions. It is suggested to select
‘Restart The Service’ for first and second failure (or al-
ways). The default setting is ‘Take No Action’.

Standard actions are supported for the service. Thus,
you may stop or restart the server. Pausing the service
will flush all write transactions and block further write re-
quests until the pause is stopped by ‘Resume’. Pausing
or stopping the server is necessary before making a
database backup.

After installing the server, the start option is set to
manual. For starting up the server automatically, you
must change the settings in the Windows service.

Page 38 of 133



Unregister Ser-
vice

For un registering the server on a Windows Server ma-
chine, you need to run the ODABAServer program
again, with the uninstall option -U.

.../ODABAServer —-U ini_file

The option file is required in this case too, for identifying
the service. You must use the same service name as for
registering.

Page 39 of 133



ODABAServer Service Settings

[ODABAServer]

NAME

DISPLAY_NAME

DESCRIPTION

[SERVER]

[CACHE]

[DATA_CATALOG]

[FILE_CATALOG]

ODABAServer Service settings are defined in a server
option file. They are the same as the server settings for
the ODABA Server whith an additional [ODABAServer]
section for registering the service (see also “Server Set-
tings”).

This section contains the definition of the service per-
formed by the ODABA server.

Defines the name for the service. The name is used to
store and identify the service in the services database.
The name should start with ODABA or the application
name.

NAME=ODABA Server

The display name is the name being used for showing
the service in applications (e.g. Service Control Man-
ager).

DISPLAY_NAME=0ODABA Database Server

The description contains a short description of the ser-
vice, which is also shown in the Service Control Man-
ager. It may contain a longer text (up to 255 characters),
but no line breaks.

DESCRIPTION=The ODABA server provides access
to ODABA databases

The server section is structured in the same way as the
server section for the ODABA Server.

The cache section is the same way as the cache section
for the ODABA Server.

The data catalog section is structured in the same way
as the data catalog section for the ODABA Server.

The file catalog section is structured in the same way as
the file catalog section for the ODABA Server.

Page 40 of 133



Option file for ODABAServer

This is an example for a typical Windows server option
file running without data catalog (minimum configuration)
[SYSTEM] system section

DICTIONARY= C:\ODABA\ODE.SYS
ODABA_PATH=C:/ODABA
PROGPATH=C:/ODABA

[ODABAServer]

NAME=0ODABA Server

DISPLAY_NAME=0ODABA Database Server

DESCRIPTION=The ODABA server provides access
to ODABA databases

[SERVER]

TRACE=C:\temp
TIMEOUT=600

[FILE_CATALOG]

SYSTEM_DICT=C:\ODABA\ode.sys
SAMPLE_DICT=C:\ODABA\Sample\Sample.dev
SAMPLE_DAT=C:\ODABA\Sample/Data\Sample.dat

Page 41 of 133



Synchronize Data-
base

Transaction limit

4 Setup Replication Database

(DBReplication)

The ODABA replication server allows running databases
on an internet server. Thus, clients distributed all over
the world may access the same ODABA database.

Replication server access is transaction based and
works on a local copy (replicate) of the master database.
Replication server is the preferred access mode for dis-
tributed clients in the internet. In this case, the server
must run on an internet server, which is known to the
clients.

Since reading data happens with local access speed,
replication server access is fast as long as update load
is low. Long transaction or frequent updates (more than
10 transactions per second and user) may cause delay,
since the replication server will serialize update requests
from different clients.

Updates are sent to the clients when starting up a client.
Running clients receive a dirty flag, which causes the
client synchronizing its local database when executing
the next database function. While synchronizing (receiv-
ing latest transaction data), appropriate update events
are sent to registered property handles.

For running a database as replication database, it must
be enabled as such.

When starting a replication client, the client is synchron-
ized with the server by loading all missing transactions,
i.e. all transactions registered after the last client ses-
sion. While running the replication client, the local data-
base copy is updated always, when starting a read
transaction, i.e. when requesting data from the data-
base.

When the number of transactions becomes very large,
starting up an application may take some time. Hence,
the number of transaction stored for synchronisation can
be limited (default: 5000). When a replication client starts
that cannot be updated by the transactions registered, a
backup of the database is sent to the clients.

The backup must be located on a WEB folder which is
defined as SERVER_URL in the server.ini file. The

Page 42 of 133



Enable/disable

path

enable/disable

ta_limit

backup file name must correspond to the database file
name with the extension replaced by .ozi (ODABA backp
format). It is suggested to run an automatic service,
which creates a database backup each day (or night) to
reduce the server burden at run-time.

For supporting replication clients, the database must en-
able replication clients. This can be done by calling

DBReplication path enable [ta_limit]

You may disable the database for replication clients by
calling

DBReplication path disable

After enabling the replication client, each internal trans-
action will be registered in the database regardless on
the mode, in which the database is running. Thus, each
replication database can be used as master database.

When explicitly disabling the replication database, the
unique database number will be reset.

Path to the database location or ini-file. The database
must be accessible on the local machine or as file share.
In case of encoded database, the ini-file is required in or-
der to provide the access key. The ini-file must contain a
DATABASE section defining at least database and dic-
tionary path (see example below). When using an ex-
ternal key file, KEY FILE is required in addition.

; minimum DATABASE section for an en-
coded
; database

[DATABASE]
DICTIONARY=...dict path...
DATABASE=...database path...
ACCESS MODE=Write

SHARE=NO

Enable or disable replication mode for database. After
disabling the replication mode, the server will not provide
replication services for this database anymore.

When enabling the replication mode for the database,
you may define the maximum number of transactions
stored for synchronization.

Page 43 of 133



Re-enable

Auto-disable

Auto-enable

Limitations

PIF

Database ob-
jects

Versions

You may re-enable (DBReplication enable ...) a replica-
tion database. This causes increasing the version num-
ber of the replication database. Clients running with an
older version of the replication database will automati-
cally reload the database when starting an application.

Re-enabling the database allows also changing the max-
imum ftransaction number for the database. Moreover,
the transaction-log is cleared.

In some cases, for maintenance reasons the replication
master base is used in a local environment. To ensure
database consistency, the replication feature for the
database is deactivated automatically, when opening the
database un update or write mode.

When moving the maintained master database back to
the server, the server detects a deactivated version and
will not startup. When the server environment (or option
file) provides a path to the local database backup loca-
tion (SERVER_LOCAL_URL), which refers to the same lo-
cation as the SERVER_LOCAL, the database will be reac-
tivated automatically during server startup. While reacti-
vating the master database, the server creates an actual
backup file and stores this to the location defined in
SERVER_LOCAL_URL.

Replication databases do have some limitations, which
will be removed in later versions.

Replication databases require compatible hardware on
client and server side, i.e. both, client and server must
be high-endean, or both must be low Endean machines.

Replication databases do not support multiple database
objects in this version, i.e. the database must consist
only of the root object (or other sub-database objects are
not of interest).

Replication servers do provide data for the current ver-
sion, only, i.e. you may not access older versions via the
server. This is not really a problem, since usually older
versions are already present on the client database. It
means, however, that the master database must com-
pletely be copied, when versioning has been made.

Page 44 of 133



Configure Replication Clients

Data source

Database

A client may use its database/databases in replication
client mode, object client mode or local mode. Thus, an
application may use any combination of access modes.

The access mode is defined for each data source in the
application. When running an application database as
replication client, usually only the database is defined as
replication database, but not the dictionary.

[DATA_SOURCE]

REPLICATION_SERVER=www.run-software.com
SERVER_PORT=6123
DICTIONARY=c:\ODABA\my_appl\my_appl.dict
DICTIONARY.CONNECTION=LOCAL
DATABASE==%MY_DATABASE%
MY_DATABASE=c:\ODABA\my_appl\my_appl.dat

The database path refers to a file name, which must be
catalogd in the servers file catalog. Also, the option
name has to be defined as option (here MY_DATA-
BASE), In order to make sure, that the correct dictionary
is used, DICTIONARY.CONNECTION may be set to LO-
CAL or SERVER. Default is AUTOMATIC.

In a data source for a replication database one may refer
to a local or server dictionary. Whether using a local or a
server dictionary depends on the fact, whether the path
referenced in the dictionary refers to a local file (local
dictionary) or not (server dictionary). you cannot refer to
a server dictionary, i.e. the dictionary path must always
be a local path.

Using a replication database is indicated by using REPLI-
CATION_SERVER instead of SERVER_URL.

The database referenced on the server must be enabled
for replication. The local database location for the repli-
cation database is defined as value for the variable
name defined in the DATABASE reference.

Page 45 of 133



Authentication

Force loading rep-
licate

NO

YES

AUTO

In order to download the database replicate from the
WEB-server, authentication might be required. User
name and password for downloading the database must
be provided in following options:

REPLICATION_HTTP_USERNAME=http_user_name
REPLICATION_HTTP_PASSWORD=http_password

These options can be set by the application program be-
fore opening a replication database or in the database
section of the client configuration or ini-file.

When testing replication server applications it might be
useful reloading the database when starting the applica-
tion. In order to force database reload rather than data-
base synchronization, the RELOAD_RDB option can be
set to one of the following values:

The system tries to synchronize the local database copy
with the replication server.

The server database is reloaded (and overwrites the lo-
cal database) when starting the application.

The system prompts the user in order to decide whether
to reload the database or not.

When not setting the RELOAD_RDB option the local
database will be synchronized with the server database
(NO).

Page 46 of 133



5 Database Set-up (SetupDB)

SetupDB allows upgrading or repairing a database. It
works similar to the CopyDB utility but it is easier to use.
SetupDB copies the database to a temporary database.
After successfully copying the database the old data-
base is deleted and the updated database is moved (or
renamed) to the original position.

When there is not enough space on the disc for a duplic-
ate of the database you can define a temporary path for
creating the intermediate database.

Usually you only need to define the data source for the
database to be reorganized. You may, however, define
the target data source when you are going to keep the
duplicate of the database in another location.

In contrast to CopyDB SetupDB maintains the object
identities for the object instances and the database iden-
tifier, i.e. you are really going to create a duplicate. Since
instances updated in one database are not updated in
the other one, it is advised to define always one primary
source when creating copies using SetupDB.

When setting up the database the current database ver-
sion is copied and the new database version will be re-
set to 0. Older versions of the database are not copied.

Page 47 of 133



Running SetupDB

Usage

Ini_file

from

to

Samples

You can run SetupDB from a command line in DOS or
UNIX. Before running SetupDB make sure that the data
sources are available.

SetupDB ini_file from [to ]

The option file defines the data sources for the data-
bases and specific copy parameters. More details on
how to define the option file you can find in “Option file
for SetupDB”

is the data source name for the source database. The
data source must be defined either in the catalog or in a
section with the same name in the option file.

is the data source name for the target database. The
data source must be defined either in the catalog or in a
section with the same name in the option file. When no
target source is defined a temporary copy will be created
and renamed to the original database name after suc-
cessful set up. In the case the drive where the database
is stored must have enough space for the temporary
database copy.

You will find sample procedure calls and option files for
Windows environment in the ODABANC installation folder
under SetupDB.bat and SetupDB.ini.

Page 48 of 133



Defining data sources

Database and dic-
tionary

Options

SetupDB copies all instances from one data source to
another one or into the same data source. There are two
ways to refer to a data source. One way is to define the
data source in the application option file. In this case the
data source is defined in a section that is preceded by
the data source name:

{DataSource1] Data source name

The other way is to refer to a data source by its data
source name:

DATA_SOURCE=DataSource1

In this case the data source must be defined in a data
catalog. Data catalogs can be provided locally and on
the server side. In one application, however, you can
refer to only one data catalog. How to define data
sources and file locations in the data and file catalog you
can find in the “ODABA — Server” documentation.

A dictionary and a database define a data source. While
the dictionary contains the data definitions the database
contains the data. Dictionary and database can be
stored in the same database file but usually they are not.
In any case, each data source definition should contain
a dictionary definition and a database definition:

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat

In special cases /when copying instances from one dic-
tionary to another one) only the dictionary defines the
data source.

Data sources can be located on a server. In this case
the data source definition refers to the server and a sym-
bolic database path that is resolved by the servers file
catalog:

SERVER_URL=MetaSever
SERVER_PORT=6123

DICTIONARY=%SAMPLE_DICT%
DATABASE==%SAMPLE_DAT%

Additional options that can be defined in a data source
are:

Page 49 of 133



ACCESS_MODE

NET

ENABLE_
CONTEXT

The access mode defines whether the database will be
used in write/update mode or read only.
ACCESS_MODE= Read | Write

Defaulr: Read

This option is required when running the database in a
file server or client/server environment for using the
database with more than one user (multi-user access).

NET=YES | NO

This feature is supported under Windows, only. Under Linux,
YES is used, always.

Default (Windows): NO

specific object behaviour (e.g. when reading or writing
objects) will be disabled. This option should be set to NO
when setting up a database since context functions may
cause errors when running setup.

ENABLE_CONTEXT=NO | YES
Default: NO

Page 50 of 133



Defining Copy Sequences

Usually when copying a database the extents are copied
in alphabetic order of the extent names. In some cases,
however, it becomes necessary to copy extents in an or-
der that differs from the alphabetic one. This is neces-
sary when you define reference collections in your data-
base that are based on extents that will be copied later.

Example: When defining the following structures:
Structure Person

attribute pers_id (CHAR)

relationship company (XCompany) based_on XCompany,
secundary

relationship section (XSection) based_on company.sec-
tions

When copying the database the companies are not
copied with the person since they are defined as sec-
ondary, i.e. the link between XCompany and Person is
maintained when copying XCompany. Since ‘section’ is
based on the company relation sections can be copied
only when a link to a company is stored. Hence you
need to copy XCompany first.

Defining a copy sequence can be done via a copy col-
lection in the dictionary. Create a SDB_Collection (e.g.
‘CopyDatabase’)that names the extents in the required
order. Then refer to the collection in the option file as

COPY_COLLECTION=CopyDatabase

In the [SetupDB] section. Make sure that you refer to all
extents because the SetupDB utility will copy only those
extents that are referenced in the list.

Copy collections can be used as well for copying selec-
ted parts of the database. In any case, copy collections
have to be defined in the dictionary. You can refer to
copy collections also when running the SetupDB utility.

Page 51 of 133



Option file for SetupDB

ODABAN¢G An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[SetupDB]

SYSTEM_ENVIRONMENT=...\MetaServer.ini’
REPLACE=database

COPY_COLLECTION=collection_name

[from_source]

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat
NET=NO

[to_source]

SERVER_URL=192.168.0.23
SERVER_PORT=6123
DICTIONARY=%SAMPLE_DICT%
DATABASE=%SAMPLE_DAT%
ENABLE_CONTEXT=NO
NET=NO

ACCESS_MODE=Write

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections for source and target data source.

L The MetaClient.ini file has been generated in the ODABAN® installation folder when in-
stalling the client. When defining data sources on the server the dictionary must be available at the
server and on the client machine. Please make sure that in this case the symbolic dictionary variable
in the MetaClient.ini points to the correct location for the dictionary on your client machine.

Page 52 of 133



PIF

Replication data-
base

6 Database Copy (CopyDB)

CopyDB allows copying complete databases or parts of
it. You can use CopyDB for copying a single object in-
stance from database to another one. CopyDB is a com-
mand line utility that can be used in Windows and UNIX
environments.

With CopyDB you duplicate parts or the whole content of
a database. Instances are considered “new” instances,
i.e. usually when copying database instances they will
get a new identity.

When copying the database you might copy the data-
base with or without running the business rules. It is sug-
gested to run the database copy without business rules
(deactivated context).

When copying the database the database version will be
reset to 0. Older versions of the database are not
copied.

Platform independence is copied to a new database un-
less it is set explicitly using the PLATFORM_INDE-
PENDENT system variable.

When the database is a replication database, RDB prop-
erties as maximum number of transactions are copied.
The RDB version is increased by one.

Page 53 of 133



Running CopyDB

Usage

Ini_file

from

to

-S[:date]

Samples

You can run CopyDB from a command line in DOS or
UNIX. Before running CopyDB make sure that the data
sources are available.

CopyDB ini_file from to [-S[:date]]

The optional parameters can be defined in the option file
as well. The content of a option file for CopyDB is de-
scribed in the following section.

The option file defines the data sources for the data-
bases and specific copy parameters. More details on
how to define the option file you can find in “Option file
for CopyDB”

is the data source name for the source database. The
data source must be defined either in the catalog or in a
section with the same name in the option file.

is the data source name for the target database. The
data source must be defined either in the catalog or in a
section with the same name in the option file.

In order to synchronize two databases by date (updating
the to-database), the option has to be set. Then, all
newer instances inheriting from _ OBJECT will be re-
placed including owned instances not inheriting from
__ OBJECT.

When passing a date, all instances newer or equal to the
date are copied from the source database. Date has to
be passed as yyyy-mm-dd.

You will find sample procedure calls and option files for
Windows environment in the ODABANC installation folder
under CopyDB.bat and CopyDB.ini.

Page 54 of 133



Defining data sources

Database and dic-
tionary

Database objects

CopyDB copies instances from one data source to an-
other one. There are two ways to refer to a data source.
One way is to define the data source in the application
option file. In this case the data source is defined in a
section that is preceded by the data source name:

{DataSource1] Data source name

The other way is to refer to a data source defined in a
database catalog by its data source name:

DATA_SOURCE=DataSource1

In this case the data source must be defined in a data
catalog. Data catalogs can be provided locally and on
the server side. In one application, however, you can
refer to only one data catalog. How to define data
sources and file locations in the data and file catalog you
can find in the “ODABANC — Server” documentation.

A dictionary and a database define a data source. While
the dictionary contains the data definitions the database
contains the data. Dictionary and database can be
stored in the same database file but usually they are not.
In any case, each data source definition should contain
a dictionary definition and a database definition:

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat

In special cases (when copying instances from one dic-
tionary to another one) only the dictionary defines the
data source.

Data sources can be located on a server. In this case
the data source definition refers to the server and a sym-
bolic database path that is resolved by the servers file
catalog:

SERVER_URL=ProjectServer
SERVER_PORT=6123

DICTIONARY=%SAMPLE_DICT%
DATABASE==%SAMPLE_DAT%

This data source definition refers to the whole database.
If you want to refer to parts of the database you can
define the following restrictions. Usually a database con-

Page 55 of 133



Extents or collec-
tions

Object instances

Options
VERSION

SCHEMA_
VERSION

ONLINE_VERSION

ACCESS_MODE

sists only of the root object. In some cases the database
itself is, however, build of a number of hierarchical data-
base objects where each database object may contain a
whole universe of object instances. Database objects
are referenced in the defined hierarchy:

OBJECT_SPACE=section1.part2

You can also restrict the data source to a certain extent
in the database or in a database object. For this pur-
pose you need only to define the extend name in the
data source:

ACCESS_PATH=State

Special object instances can be defined by setting the
identification key in the data source:

ACCESS_KEY=Sweden
Some options that can be defined in a data source are:

Internal database version number when the database is
using version features. The version number allows seet-
ing up the database according to a historical state.

VERSION=version
Default: current version

Database version for the dictionary. When setting up an
oldel version of the database you might run this with the
appropriate dictionary version used at this time. Usually
the system tries to detect the proper dictionary version.

SCHEMA_VERSION=version
Default: Dictionary version for the database

This value enables online-versioning feature that allows
automatically upgrading to higher database model ver-
sions.

ONLINE_VERSION=YES

When this variable is not set or set to NO the application
will not run with newer database versions.

The access mode defines whether the database will be
used in write/update mode or read only.

ACCESS_MODE= Read | Write

Default: Read (for from-data source), Write (for to-data
source)

Page 56 of 133



NET

ENABLE_
CONTEXT

This option is required when running the database in a
file server or client/server environment for using the
database with more than one user (multi-user access).

NET=YES | NO

This feature is supported under Windows, only. Under Linux,
YES is used, always.

Default (Windows): NO

specific object behaviour (e.g. when reading or writing
objects) is usually disabled. In order to enable context
functions, this option has to be set to YES. This option
should be set to NO when setting up a database since
context functions may cause errors when running setup.

ENABLE_CONTEXT=NO | YES
Default: NO

Page 57 of 133



Defining Copy Sequences

Usually when copying a database the extents are copied
in alphabetic order of the extent names. In some cases,
however, it becomes necessary to copy extents in an or-
der that differs from the alphabetic one. This is neces-
sary when you define reference collections in your data-
base that are based on extents that will be copied later.

Example: When defining the following structures:
Structure Person

attribute pers_id (CHAR)

relationship company (XCompany) based_on XCompany,
secundary

relationship section (XSection) based_on company.sec-
tions

When copying the database the companies are not
copied with the person since they are defined as sec-
ondary, i.e. the link between XCompany and Person is
maintained when copying XCompany. Since ‘section’ is
based on the company relation sections can be copied
only when a link to a company is stored. Hence you
need to copy XCompany first.

Defining a copy sequence can be done via a copy col-
lection in the dictionary. Create a SDB_Collection (e.g.
‘CopyDatabase’) that names the extents in the required
order. Then refer to the collection in the option file as

COPY_COLLECTION=CopyDatabase

In the [SetupDB] section. Make sure that you refer to all
extents because the SetupDB utility will copy only those
extents that are referenced in the list.

Copy collections can be used as well for copying selec-
ted parts of the database. In any case, copy collections
have to be defined in the dictionary. You can refer to
copy collections also when running the SetupDB utility.

Page 58 of 133



Replace options

replace_opt

REPLACE

The replace option defines the way to handle existing in-
stances in the target database. Replace options have to

be defined in the

REPLACE option in the option file as

suboption for CopyDB.

The following values might be set for the replace option:

all -

none -

local -

no_create -

database -

Page 59 of 133

overwrite all existing instances and
referenced instances

do not replace existing instances

overwrite all existing instances and
referenced instances that are owned
by the instance. Instances that are ref-
erenced but not owned are not re-
placed.

overwrite all existing instances but do
not create new instances.

when copying the whole database to a
new one (database reorganization)
you should define this option. This is
using a more efficient copy technique
and avoids recursive copy operations.



Option file for CopyDB

ODABAN¢G An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[CopyDB]
SYSTEM_ENVIRONMENT-=...\MetaServer.ini2
REPLACE=database
COPY_COLLECTION=collection_name

[from]
DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat

NET=NO
ACCESS_PATH =* (copy all extents)
ACCESS_KEY=* (copy all instances)

ENABLE_CONTEXT=NO
ONLINE_VERSION=YES

[to]

SERVER_URL=192.168.0.23
SERVER_PORT=6123
DICTIONARY=%SAMPLE_DICT%
DATABASE=%SAMPLE_DAT%

ENABLE_CONTEXT=NO

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections for source and target data source.

2 The MetaClient.ini file has been generated in the ODABAN® installation folder when in-
stalling the client. When defining data sources on the server the dictionary must be available at the
server and on the client machine. Please make sure that in this case the symbolic dictionary variable
in the MetaClient.ini points to the correct location for the dictionary on your client machine.

Page 60 of 133



PIF

Replication data-
base

7 Resource Database Copy

(CopyResDB)

CopyResDB allows copying complete resource data-
bases or parts of it. You can use CopyResDB for copy-
ing a single resource object instance or structure defini-
tion from one resource database to another one. CopyR-
esDB is a command line utility that can be used in Win-
dows and UNIX environments.

With CopyResDB you duplicate parts or the whole con-
tent of a resource database. Instances are considered
an “new” instances, i.e. usually when copying database
instances they will get a new identity.

When copying the resource database the schema ver-
sion will be reset to 0. This requires a database set-up
(SetupDB) for databases running with the old resource
database when the old resource database has a version
higher then 0.

Platform independence is copied to a new resource
database unless it is set explicitly using the PLAT-
FORM_INDEPENDENT system variable. Big endian

When the database is a replication database, RDB prop-
erties as maximum number of transactions are copied.
The RDB version is increased by one.

Page 61 of 133



Running CopyResDB

Usage

Ini_file

from

to

Samples

You can run CopyResDB from a command line in DOS
or UNIX. Before running CopyResDB make sure that the
data sources are available.

CopyResDB ini_file from [ to]

The content of a option file for CopyResDB is described
in the following section.

The option file defines the data sources for the data-
bases and specific copy parameters. More details on
how to define the option file you can find in “Option file
for CopyResDB”

is the data source name for the source database. The
data source must be defined either in the catalog or in a
section with the same name in the option file.

is the data source name for the target database. The
data source must be defined either in the catalog or in a
section with the same name in the option file.

When not defining the to parameter the database is
copied “in place” (reorganisation of the resource data-
base). This means that the database is copied to a data-
base with the same database name in the same location
by changing the suffix to # o (e,g, to sample.# o).

When the copy has been finished succesfully the original
database is deleted and the new database is renamed to
the original database name. This may fail when the data-
base is in use by another application. In this case you
may remove and rename the files manually after closing
all applications using the old resource database.

You will find sample procedure calls and option files for
Windows environment in the ODABANS installation folder
under CopyResDB.bat and CopyResDB.ini.

Page 62 of 133



Defining data sources

Database and dic-
tionary

Copy Structures

CopyResDB copies structure definitions or other re-
source instances from one resource database to another
one or into the same data source. There are two ways to
refer to a data source. One way is to define the data
source in the application option file. In this case the data
source is defined in a section that is preceded by the
data source name:

[DataSource1] Data source name

The other way is to refer to a data source by its data
source name:

DATA_SOURCE=DataSource1

In this case the data source must be defined in a data
catalog. Data catalogs can be provided locally and on
the server side. In one application, however, you can
refer to only one data catalog. How to define data
sources and file locations in the data and file catalog you
can find in the “ODABANC — Server” documentation.

A dictionary and a database define a data source. When
copying a resource database the application dictionary is
considered as database while the system dictionary
(ODE.SYS) plays the rule as dictionary. The system dic-
tionary is part of the ODABANC installation and usually
stored in the ODABANE installation path.

DICTIONARY=C:\ODABA\ode.sys
DATABASE=C:\ODABA\Sample/Sample.dev

Data sources can be located on a server. In this case
the data source definition refers to the server and a sym-
bolic database path that is resolved by the servers file
catalog:

SERVER_URL=ProjectSever
SERVER_PORT=6123

DICTIONARY=%SYSTEM_DICT%
DATABASE==%SAMPLE_DICT%

For copying schema definitions (structures or enumera-
tions) you can define the DATA_TYPE variable

DATA_TYPE=data type name

The structure_name refers to the structureor enumeration to be

Page 63 of 133



Extents or collec-
tions

Instances

Data source Op-
tions

VERSION

ACCESS_MODE

copied. When copying a structure defintion all related re-
sources as extent definitions or persisten structure definitions
are copied as well as all referenced structure definitions. Thus,
copying a single structure may take some time.

For copying all structures you can define the STRUCTUE vari-
able as

DATA_TYPE=*

You can copy other resource database instances by de-
fining the extend to be copied. For this purpose you
need only to define the extend name in the data source:

ACCESS_PATH =p_err (copy error definitions)

Special object instances can be selected for copying by
defining the identification key in the data source:

ACCESS_KEY=100 (copy p_err 100)

The ACCESS_KEY option is valid only in connection with the
ACCESS_PATH variable. For copying all instances for a selec-
ted extent you might define

ACCESS_KEY=*
Or just skip the the ACCESS_KEY variable in your option file.

Do not copy schema definitions as SDB_Structure or
SDB_Codeset using the extent and instance variables.
This will create invalid structure definitions in the target
database. For copying schema definitions you should al-
ways use the DATA_TYPE variable.

Some more options that can be defined in the CopyR-
esDB section of your option file are:

Internal database version number when the database is
using version features. The version number allows copy-
ing the resource database according to a historical state.

VERSION=version

Default: current version

The access mode defines whether the database will be
used in write/update mode or read only.

ACCESS_MODE= Read | Write

Default: Read (for from-data source), Write (fot to-data source)

Page 64 of 133



NET

CopyResDB Op-
tions

RETAIN_SID

RETAIN_
SCHEMAVERSION

This option is required when running the database in a
file server or client/server environment for using the
database with more than one user (multi-user access).

NET=YES | NO

This feature is supported under Windows, only. Under Linux,
YES is used, always.

Default (Windows): NO

Some more options can be defined in the CopyResDB
section of your option file. These options are valid only
when copying structure or enumeration definitions from
one resource database into another. You should use this
option only when copying into an empty resource data-
base.

Structures are identified internally by numbers created in
the database system. This internal type number is used
to identify the type of a stored database instance. Whe
you are going to use the copied dictionary with an
already existing database you must define

RETAIN_SID=YES

You should not use this option when copying single structure
definitions from one resource database to another one.

This option will copy the schema version for each struc-
ture definition. This is necessary to guaranty the compat-
ibility with old databases when using schema versioning
features.

RETAIN_SCHEMAVERSION=YES

Otherwise the schema version for all structure definitions
is set to 0 and ols databases running with the dictionary
must be reorganized (SetupDB).

Copyinf the the schema version does not mean that the
history is copied. The consequence is the after copying
the database ONLINE VERSIONING will not work any-
more for older databases.

Page 65 of 133



Option file for CopyResDB

ODABAN¢G An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[CopyResDB]
RETAIN_SID=YES
RETAIN_SCHEMAVERSION=YES

[from]

DICTIONARY=C:\ODABA\ode.sys
DATABASE= C:\ODABA\Sample\Sample.dev

NET=NO

DATA_TYPE=*

ACCESS_PATH =* (copy all extents)
ACCESS_KEY=" (copy all instances)
[to]

SERVER_URL=192.168.0.23
SERVER_PORT=6123
DICTIONARY=%SYSTEM_DICT%

DATABASE=%SAMPLE_DICT%

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections for source and target data source.

Page 66 of 133



Use Cases for CopyResDB

Reorganize

Option file

Start copy

Remarks

This section describes some typical use cases for run-
ning CopyResDB.

Reorganizing the resource database becomes neces-
sary when the database is damaged for some reason.
Damages may affect indexes or links to their objects. In
most cases reorganizing the resource database can re-
pair such damages. Another case for running CopyR-
esDB is the release of a new ODABA system version.
Usually this is supported by online versioning features
for schema. Since the system level supports, however,
only one historical version we suggest to run CopyR-
esDB in this case to make sure that your application is
ready for the next system release.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[CopyResDB]
RETAIN_SID=YES
RETAIN_SCHEMAVERSION=YES

[from]

DICTIONARY=C:\ODABA\ode.sys
DATABASE= C:\ODABA\Sample\Sample.dev

NET=YES

[to]
DICTIONARY=C:\ODABA\ode.sys
DATABASE= C:\ODABA\Sample\Sample.dev.new

NET=NO
C:\ODABA\CopyResDB ini_file from to

This example allows reorganizing the database when
the dictionary is still in use (NET=YES in the from data
source). After the reorganization has been completed
successfully you should rename the database to the
name of the original database.

When setting up a new system version you should save
the old system dictionary ode.sys before installing the
new ODABANCG version (e.g. ode.old). Than you should
use the old system dictionary as DICTIONARY in the
from data source section.

Page 67 of 133



Copy Structure
with rename

Option file

Start copy

Remarks

Copy Instances
with rename

Do never run SetupDB for reorganizing a resource data-
base. This will fail because structure definitions are not
copied properly.

If you are going to use a structure for another application
you can copy the structure from one dictionary to an-
other. Doing this you can also rename the structure
definition.

[SYSTEM] system section
DICTIONARY= C:\\ODABA\ODE.SYS
[CopyResDB]

[from]
DICTIONARY=C:\ODABA\ode.sys

DATABASE= C:\ODABA\Sample\Sample1.rot
DATA_TYPE=Person

NET=YES

[to]
DICTIONARY=C:\ODABA\ode.sys

DATABASE= C:\ODABA\Sample\Sample2.rot
DATA_TYPE=ContactPerson

NET=YES
C:\ODABA\CopyResDB ini_file from to

Only for renaming the structure you must define the
DATA_TYPE variable in the [to] data source section.
Structure references to a new named structure are main-
tained for structures copied subsequently.

You might copy structure definitions also when data-
bases are in use.

When copying a structure definition all referenced struc-
tures are copied as well. You can, however, rename only
the structure that is copied “on top”.

If you are going to copy specific resources as e.g. win-
dow definitions (swn) or document templates into an-
other resource database you might copy a single in-
stance with or without rename.

Page 68 of 133



Option file

Start copy

Remarks

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS
[CopyResDB]

[from]

DICTIONARY=C:\ODABA\ode.sys
DATABASE= C:\ODABA\Sample\Sample1.rot
ACCESS_PATH =ADK_Class
ACCESS_KEY=Person

NET=YES
[to]
DICTIONARY=C:\ODABA\ode.sys

DATABASE= C:\ODABA\Sample\Sample2.rot
ACCESS_KEY=PersonForm

NET=YES
C:\ODABA\CopyResDB ini_file from to

Only for renaming the instance you must define the AC-
CESS_KEY variable in the [to] data source section.

You might copy resource instances also when data-
bases are in use.

When copying instances or extents all linked instances
are copied recursively except those that are defined as
“secondary” in the relationship definition.

Page 69 of 133



Running PackDB

db_name

temp_path

Samples

8 Pack Database (PackDB)

The PackDB utility creates a compressed copy of the
database by removing unused (deleted) database en-
tries. The copy of the database will be created in the
same folder. If there is not sufficient space on the disk
you can use temp-path for defining another location for
the intermediate file. When finishing the compressed
database will be moved or renamed to the original posi-
tion.

You can run PackDB from a command line in DOS or
UNIX. Before running PackDB make sure that the data-
base is available.

PackDB.exe db_name [temp_path] [-q] [-h] [-p:type]

PackDB will compress the database. After compressing
the database deleted instances cannot be ‘revived'.

Is the complete name (path) of database to be packed.

You may pack all types of databases as application
databases, resource databases or system databases.

There should be sufficient space in the current location
(folder) of the database for storing a copy of the data-
base. If there is not sufficient space you can pass a path
to a location where a temporary copy of the database is
stored.

You will find sample procedure calls in a Windows envir-
onment in the ODABANS installation folder under PackD-
B.bat.

Page 70 of 133



Client/server

Database Backup (BackupDB)

The tool supports an ODABA specific database backup.
Backing up an ODABA database creates a compressed
database copy, which can be restored using RestoreDB.

Since BackupDB backs up nearly 10 MB per second on
a 3 GHz Intel processor with 2GB memory, the interrupt
for updating clients might be acceptable, i.e. BackupDB
can be started also when clients are working actively on
the database.

One should, however, not run BackupDB while importing
large amount of data, since this may lock the import pro-
cess for a while.

For restoring a backup file the RestoreDB utility can be
used.

The BackupDB utility works successfully only, when no
other application or server is accessing the database.

It may run locally, only, but not in client/server mode.
Since BackupDB requires a consistent database state, it
cannot run in parallel with other database applications.
BackupDB ensures that it runs exclusively and will ter-
minate with errors, when other applications are access-
ing the database.

Making backups in client/server environment is possible
with the similar server command DBBackup.

Page 71 of 133



Running BackupDB

ini_file

target

You can run BackupDB from a command line in DOS or
UNIX. Before running BackupDB, make sure that the
data base is available. It is suggested to run BackupDB
exclusively, but you may also run it in Client/Server
mode. You cannot run BackupDB locally, when other ap-
plications are accessing the database updating.

BackupDB ini_file [targef] [-q] [-h] [-p:type]
The details for the data source are described in the con-

figuration or ini-file. The utility backs up the database,
only, but not the dictionary.

The configuration or ini-file defines the data source for
the database. More details on how to define the option
file you can find in “Option file for BackupDB”

The target is the file path for storing the backup file.
When passing a directory instead of a complete file path,
a backup file name is the same as the database name
with the extension ozi, which is the suggested extension
for backup files. When not passing a location, the
backup file is stored in the same directory as the data-
base.

When running in client/server mode, the location must
be a valid location on the server.

Page 72 of 133



Option file for BackupDB

An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[BackupDB]

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat
ACCESS_MODE=Write

NET=NO

Page 73 of 133



Client/server

Database Restore (RestoreDB)

RestoreDB supports restoring an ODABA specific data-
base backup. The backup of the database must have
been created using BackupDB.

The RestoreDB utility works successfully only, when no
other application or server is accessing the database.

It may run locally, only, but not in client/server mode.
Since RestoreDB restores a complete database, it can-
not run in parallel with other database applications. Re-
storeDB ensures that it runs exclusively and will termin-
ate with errors, when other applications are accessing
the database.

Restoring a database in client/server environment is
possible with the similar DBRestore server command.

Page 74 of 133



Running RestoreDB

ini_file

source

RestoreDB supports restoring an ODABA specific data-
base backup, which has been created calling Back-
upDB.

You can run RestoreDB from a command line in DOS or
UNIX. Before running RestoreDB, make sure that the
data base is available. RestoreDB must run exclusively,
i.e. no other clients may access the database to be re-
stored.

You may also run RestoreDB in Client/Server mode. In
this case RestoreDB checks the server for running cli-
ents and stops clients, when necessary.

You cannot run RestoreDB locally, when other applica-
tions are accessing the database.

RestoreDB ini_file [source] [-q] [-h] [-p:type]
The details for the data source are described in the op-

tion file. The utility backs up the database, only, but not
the dictionary.

The configuration or ini-file defines the data source for
the database. More details on how to define the option
file you can find in “Option file for RestoreDB”

The source is the path where the backup file has been
stored. The path must refer to a valid ODABA backup
file, which usually (but not necessarily) have the exten-
sion ozi. ODABA backup files have a four byte identifica-
tion (“SOSZ”) in the file.

When no filename is passed, the backup file name is
supposed to be the same as the database file name, just
with the different extension ozi.

Page 75 of 133



Option file for RestoreDB

An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[RestoreDB]

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat
ACCESS_MODE=Write

NET=NO

Page 76 of 133



Client/server

Check functions

Inverse reference
check

Index check

GUID check

Check Database Consistency
(CheckDB)

The database consistency check allows performing dif-
ferent types of consistency checks for the whole data-
base or specific parts of the database. It provides also
features for repairing inconsistent database states.

The CheckDB utility may run locally, only, but not in cli-
ent/server mode. It works successfully only, when no
other application or server is accessing the database.

Since CheckDB may change the database on a low ac-
cess level, it cannot run in parallel with other database
applications. CheckDB ensures that it runs exclusively
and will terminate with errors, when other applications
are accessing the database.

Checking a database in client/server environment is pos-
sible with the similar DBCheck server command.

Several types of checks are supported by CheckDB.

In some cases, inverse references might be inconsistent
in a way, that an instance A points to B, but B does not
have the inverse reference to A. Such problems can be
detected (and repaired) by running the Inverse Refer-
ence Check.

Each collection in the database is based on one or more
indexes. The Index Check detects corrupt indexes and
repairs them.

Even though ODABA takes care about reference con-
sistency, there might be situations, in which references
point to instances that have already been deleted. The
index check determines such ‘dangling’ pointers and re-
moves them from the index.

Global unique identities (GUID) are unique identifier,
which are maintained also when copying objects
between databases or when reorganizing a database.
GUIDs are specific keys, which are created on demand.

For some reasons, there might be problems with GUIDs,
which are not stored in the GUID index or not created
properly. To detect GUID-problems and repair them, you
may run the GUID Check.

Page 77 of 133



Running CheckDB

Usage

ini_file

C:checks

-S:srce

You can run CheckDB from a command line in DOS or
UNIX. Before running CheckDB, make sure that the data
base is available. It is suggested to run CheckDB ex-
clusively, but you may also run it in Client/Server mode.

CheckDB ini_file [-C:checks] [-S:srce] [-T:type] [-R]
[-W] [-K:time]
The details for the data source are described in the op-
tion file.

The option file defines the data source for the database.
More details on how to define the option file you can find
in “Option file for CheckDB”

The list of check options determines the type of checks
to be performed:

| Inverse reference check
X Index check
G GUID check

Default: -C:IXG (running all checks)

The order of these options does not play any role. You
may also use capital or small letters except for the op-
tion key —C:

The source describes a property path to the collection or
set of instances to be checked. You may define an ex-
tent as

Persons

but also a more complex path as
Persons().accounts

which represents the accounts for all persons.

When no source is defined, the whole database is
checked.

Default: -S:* (check the whole database)

Page 78 of 133



-T:type

-K:time

The type defines the source type:

Clollections] check all collections referenced by the
source. Since the collection check makes
sense for | and X, only, the GUID check
(G) is ignored when being defined to-
gether with Type C.

When no source is defined, all global col-
lections (extents) are checked. When an
extent name (e.g. Persons) is passed as
source, only the extent is checked. When
a path is passed (e.g. Persons().ac-
counts(), the accounts collection for each
person is checked.

I[nstances] Check all instances (or the references for
all instances referenced in the source.

When no source is defined, all instances
in the database (G) or the reference col-
lections for all instances (I, X) are
checked. When an extent is passed (e.g.
Person), all instances stored in the extent
are checked (for G) or the reference col-
lections for all instances are checked (for
I, X). When a path is passed (e.g. Per-
sons().accounts), all account instances
(G) or all reference collections for all ac-
count instances (I, X) are checked.

A[ll] Check instances and collections.
Default: -T:all (check instances and collections)

When running CheckDB in client/server mode, the data-
base must be available exclusive for CheckDB, i.e. no
clients must access the database. The Kkill option allows
stopping clients after a given time interval (time in
seconds). When a time interval has been defined, the
clients are informed, that the client will be stopped after
‘time’ seconds.

When passing the —K option, only, the clients accessing
the database to be checked are stopped immediately
and without warning.

When not passing the kill option, CheckDB will terminate
with error when there are active clients using the data-
base to be checked.

Page 79 of 133



Output

Samples

Maximum check

Checking GUIDs
for all persons

Repair refer-
ences for per-
sons

Checking Inverse
references

Running CheckDB without repair option, the database is
checked for errors, only. Passing the repair option
causes CheckDB repairing the problems detected, if
possible. The protocol file contains information, whether
repairing the problem has been succeeded or not.

For showing warnings in the protocol, the warning option
must be set. Otherwise, error are displayed, only.

The output is written to console. For storing the output to
a file, you must re-direct the output to a file. When run-
ning CheckDB on a server database (in client/server
mode), the output is written after CheckDB has been ter-
minated completely. Locally, problems are written to the
protocol as soon as an error has been detected.

You will find sample procedure calls and option files for
Windows environment in the ODABANGS installation folder
under CheckDB.bat and CheckDB.ini.

The maximum check includes all possible checks for a
database and can be called as:

CheckDB ini_file -C:IXG -S:* -T:all -R
or, referring to defaults
CheckDB ini_file —R

The repair option must be passed to repair problems
found.

CheckDB ini_file -C:G -S:Persons

This call will report GUID problems for all person in-
stances but not repair them (because of the missing -R
option).

CheckDB ini_file -C:X -S:Persons -T:Instances

This call will check and repair the reference collections
for all person instances, i.e. it will remove dangling point-
ers from all references in person instances and repair in-
dexes when required. When not passing the Instance
type option -T:Instances, the check is performed for the
Persons extent, only, by removing dangling person refer-
ences from the collection.

CheckDB ini_file -C:I -R

This call will inverse references for the complete
database. This check is time consuming and takes
about 1 minute per 10 MB database.

Page 80 of 133



Option file for CheckDB

An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section
DICTIONARY= C:\ODABA\ODE.SYS

[CheckDB]

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat
NET=NO
ENABLE_CONTEXT=NO
ACCESS_MODE=Write
When running CheckDB on a server, you need to define
the server location (SERVER_URL and SERVER_PORT).
In this case you must set NET to YES.

The business rules should always be disabled (EN-
ABLE_CONTEXT=NO), since they might be time con-
\?/ suming and may disturb the repair process.

Page 81 of 133



Running ResetKey-
Locks

db_path

session_id

9 Reset pending key locks (Re-

setKeyLocks)

The ResetKeylLocks utility allows resetting pending key-
locks, which may result from applications terminated ab-
normally. You may use the ResetKeylLocks also for dis-
playing pending key locks.

Make sure, that all other applications using the database
have been closed. Since the function requires exclusive
database access, you cannot run ResetKeylLocks from a
client on the server or when the database is used by an
other application.

You can run ResetKeylLocks from a command line in
DOS or UNIX. Before running ResetKeyLocks make
sure that the database is available.

ResetKeyLocks db path [-ID:session_id ] [-L]

ResetKeyLocks will remove all pending key locks or the
key locks for the session identifier passed to the func-
tion.

Is the complete path to the database.

You may remove key locks in all types of databases as
application databases, resource databases or system
databases.

The owner or session number it a consecutive number
created for each database opened with write access.
This allows removing key locks created in a specific ses-
sion. Usually, after closing all database applications, no
key locks should be registered and no session number
should be passed in order to delete all key locks.

The list option can be set in order to display pending key
locks without resetting. .

You may remove key locks in all types of databases as
application databases, resource databases or system
databases.

Page 82 of 133



Running DBSys-
teminfo

db_name

print_path

Samples

10 Database System Information

(DBSysteminfo)

DBSysteminfo allows displaying database system infor-
mation as database versions and basic locations for root
objects. Especially database versions allow detecting er-
rors when opening the database with a wrong software
version or an invalid replication client.

You can run DBSystemInfo from a command line in DOS
or UNIX. Before running DBSystemInfo make sure that
the database is available.

c:\ODABA\DBSystemInfo.exe db_name
[print_path]

DBSystemInfo provides system information for the
passed database in the file defined in the print_path
vparameter,

Is the complete name (path) of database to be dis-
played.

You may display system information for all types of data-
bases as application databases, resource databases or
system databases.

Is the path and file name for writing the system informa-
tion.

If print_path is not defined the DBSysteminfo.txt on the
current folder will contain the result.

You will find sample procedure calls in a Windows envir-
onment in the ODABANS installation folder under DBSys-
teminfo.bat.

Page 83 of 133



Running DBStatist-
ics

db_path

print_path

Samples

11 Database Statistics (DBStatist-
ics)

DBStatistics allows displaying detailed database statis-
tics as used and deleted objects instances, cluster sta-
tistics and space requirements for instances and in-
dexes. This can be helpful for detecting the requirement
for compressing the database (PackDB).

You can run DBStatistics from a command line in DOS
or UNIX. Before running DBStatistics make sure that the
database is available.

C:\ODABA\DBStatistics.exe db_path [ print_path |

DBStatistics provides database statistics for the passed
database in the file defined in the print_path parameter,

Is the complete name (path) of database to be dis-
played.

You may display database statistics for all types of data-
bases as application databases, resource databases or
system databases.

Is the path and file name for writing the database statis-
tics.

If print_path is not defined the DBStatistics.txt file on the
current folder will contain the result.

You will find sample procedure calls in a Windows envir-
onment in the ODABANC installation folder under DBS-
tatistics.bat.

Page 84 of 133



Running DBDictS-
tatistics

dict_path

print_path

Samples

12 Dictionary Statistics (DBDictS-
tatistics)

DBDictStatistics allows displaying dictionary statistics
about types defined via the dictionary. It lists all complex
data types used for storing data an application database
or external medium such as binary or csv files. Beside
type name, the tool lists internal type number, current
schema version number, indicators for system type, enu-
meration and persistence as well as internal and ex-
ternal length for instances of the type.

All this can be helpful for detecting errors in structure
definitions or schema version mismatch.

You can run DBDictStatistics from a command line in
DOS or UNIX. Before running DBDictStatistics make
sure that the database is available.

C:\ODABA\DBDictStatistics.exe dict_(ath
[ print_path ]

DBDictStatistics provides dictionary statistics for the
passed database in the file defined in the print_path
parameter,

Is the complete name (path) of dictionary database to be
displayed.

Allthough you may display dictionary statistics for all
types of databases as application databases, resource
databases or system databases, it makes not much
sense for application databases, except you hane cre-
ated runtime type definitions in an application database.

Is the path and file name for writing the dictionary statis-
tics.

If print_path is not defined the DBDictStatistics.txt file on
the current folder will contain the result.

You will find sample procedure calls in a Windows envir-
onment in the ODABAN® installation folder under DBDict-
Statistics.bat.

Page 85 of 133



Running DBVer-
sion

path

operation

M[ode]

13 Version administration (DBVer-

sion)

The version utility provides a number of operations for
maintaining database entry versions. This includes cre-
ating and removing versions as well as displaying man-
aged versions.

One may run DBVersion from a command line in DOS or
UNIX. Before running DBVersion, make sure that the
database is available.

...IDBVersion.exe poth [ operation ] [ -M:mode ]
[ -V:version ][ -T:time ]

One may perform different operations for the database
version list.

The path refers to the database location or ini-file. The
database must be accessible on the local machine or as
file share. In case of encoded database, the ini-file is re-
quired in order to provide the access key. The ini-file
must contain a DATABASE section defining at least data-
base and dictionary path (see example below). When
using an external key file, KEY FILE is required in addi-
tion.

; minimum DATABASE section for an en-
coded
; database

[DATABASE ]
DICTIONARY=...dict path...
DATABASE=. ..database path...
ACCESS MODE=Write

SHARE=NO

One of the operations described below has to be spe-
cified as operation to be performed. When no operation
is passed, L[ist] is assumed.

Allows setting or changing the versioning mode to the
value passed in the mode option. The mode .

DBVersion.exe db_path Mode [ -M:vm ]

Page 86 of 133



Clreate]

U[pdate]

L[ist]

-T:time

Create new version slice. Usually, creating a new ver-
sion closes the last version slice by setting the current
date and time as termination data. In order to close the
last version slice later on, the termination time (or start-
ing time for the new version) has to be passed.

DBVersion.exe db_path Create [ -T:time ]

Update version slice. In order to update a version slice,
version number and When not passing a version num-
ber, the last version slice will be removed. In order to re-
move several version slices at ones, the oldest version
number to be removed might be passed as version num-
ber.

DBVersion.exe db_path Update [ -V:version ]
[-T:time ]

The operation removes all data stored for the version(s)
higher or equal to the version number passed and resets
the version number.

In order to list predefined and previous versions, list has
to be passed as operation..

DBVersion.exe db_path List [ -V:version ]

In order to update or create version slices, the termina-
tion time for the version slice (timestamp with a date or
date/time value) might be passed:

-T(2009-12-01 12:00:00,00) or
-T:2009-12-01

When the time value contains spaces, -T(...) should be
used rather than -T:... .

Page 87 of 133



-M:mode

-V:version

Allows setting or updating versioning mode. Since
ODABA supports only one version mode in a database,
the version mode can be set explicitly or implicitly.

DBVersion.exe db_path -M:mode

Versioning modes are combined from settings for three
features:

e Versioning levels: Versioning levels support hier-
archical or simple versioning
Managed - major (managed) and minor ver-
sions are supported. Major versions are al-
ways consistent.
Default — simple (non hierarchical) versioning

e Versioning consistency: Different levels of con-
sistency may be requested

Consistent - Database consistency is guaran-
teed for all versions
Synchronized - version numbers are syn-
chronized (temporal order)
Default - each scope defines its own version
numbers

e Versioning scope: The versioning scope
defines the scope for consistent version-
ing

Local - instance scope
Individual - owner scope

Default - database

Versioning modes are set by passing the first letter for
each selected feature. One may select none or one fea-
ture from each feature category. Features must be
passed in the sequence as listed above (e.g. -M:MCl)

When no version mode is set, the version mode is de-
termined automatically with the first versioning request.
E.g. when creating a version slice, version slice mode
will be activated.

The version number refers to the version to be reset or
updated. The version number has to be defined as valid
version in the version list.

Page 88 of 133



Running DBWork-
space

ini_file

data_source

operation

ws_name

user

options

14 Workspace Utility (DBWork-

space)

The workspace utility provides a number of operations
for maintaining workspaces. This includes creating, re-
moving workspaces as well as displaying the workspace
hierarchy.

You can run DBWorkspace from a command line in DOS
or UNIX. Before running DBWorkspace, make sure that
the database is available.

DBWorkspace inj_file data_source operation
ws_name [ user] [ options ]

You can perform different operations for the workspaces
in a database.

The option file defines the data source for the databases
and specific parameters. More details on how to define
the option file you can find in “Option file for DBWork-
space”

is the data source name for the source database. The
data source must be defined either in the catalog or in a
section with the same name in the option file.

One of the operations described below has to be spe-
cified as operation to be performed.

Is the name of the workspace the operation should be
performed for.

Workspaces that are owned by users need a username
for authorizing the operation. .

The options depend on the operation performed.

Page 89 of 133



Enable

Disable

Create

Running a database with workspaces required enabling
the database for workspace processes. When enabling
the database a shadow database will be created and a
system workspace (WSO0) is allocated. WSO cannot be
referenced explicitly as a workspace but is the base for
all other workspaces.

DBWorkspace inj_file data_source Enable [-R:path]

The shadow database is copied from the original data-
base to the location defined in path. When no location is
passed the shadow database will be created in the same
location as the original database with the extension
.sdw. The system workspace is located in the same loc-
ation as the original database with the extension .ws0.

This operation disables the workspace feature for a
database. The current state of the shadow database is
copied to the original database, which practically means
that all open workspaces are consolidated. All work-
spaces including WSO are deleted.

DBWorkspace inj_file data_source Disable

After disabling workspaces you cannot use workspaces
until this feature is enabled again.

Creates a new workspace. When passing a hierarchical
workspace name where the workspaces on different
levels are separated by ‘.’ (e.g. “wspace.subspace”) all
workspaces that do not exist in the hierarchy are cre-
ated.

DBWorkspace ini_file data_source
Create [-W:ws_name [-U:user]]
For creating a user specific workspace a user name has
to be passed. The workspace name (ws_name) is a
workspace within the workspace defined in the data

source (WORKSPACE). When not passing a workspace
name the workspace defined in the option file is created.

Page 90 of 133



Delete

Consolidate

Deletes an existing workspace. An existing workspace
can be deleted only when it is the lowest in the hier-
archy, i.e. when the workspace does not have sub-
spaces. Moreover, the workspace must be empty. When
the workspace is not empty use the Discard or Consolid-
ate operation to clear the workspace.

When passing a hierarchical workspace name where the
workspaces on different levels are separated by ‘.’ (e.g.
“wspace.subspace”) only the last workspace in the hier-
archy is deleted.

DBWorkspace inj_file data_source
Delete [-W:ws_name [-U:user]]

When a user owns the workspace the user name must
be passed for deleting the workspace.

Consolidates an existing workspace. Consolidating a
workspace will store all updates made in the workspace
on the higher workspace and empty the workspace.

When passing a hierarchical workspace name where the
workspaces on different levels are separated by ‘.’ (e.g.
“wspace.subspace”) only the last workspace in the hier-
archy is consolidated.

DBWorkspace ini_file data_source
Consolidate [-W:ws_name [-U:user]]

When a user owns the workspace the user name must
be passed for consolidating the workspace. The work-
space name (ws_name) is a workspace within the work-
space defined in the data source (WORKSPACE). When
not passing a workspace name the workspace defined in
the option file will be consolidated.

Page 91 of 133



Discard

List

Discards an existing workspace. Discarding a workspace
will undo all updates made in the workspace and empty
the workspace. A workspace can be discarded only
when it is the lowest in the hierarchy, i.e. when the work-
space does not have sub-spaces that contain data.

When passing a hierarchical workspace name where the
workspaces on different levels are separated by ‘.’ (e.g.
“wspace.subspace”) only the last workspace in the hier-
archy is discarded.

DBWorkspace ini_file data_source
Discard [-W:ws_name [-U:user]]

When a user owns the workspace the user name must
be passed for discarding the workspace. The workspace
name (ws_name) is a workspace within the workspace
defined in the data source (WORKSPACE). When not
passing a workspace name the workspace defined in the
option file is discarded.

Lists the workspaces that exist below the passed work-
space. For displaying the workspaces for the database
(top workspaces) * can be passed as workspace name.

DBWorkspace ini_file data_source
List [-\W:ws_name [-U:user]] ] [-T]

The workspace name (ws_name) is a workspace within
the workspace defined in the data source (WORK-
SPACE). When not passing a workspace name, work-
spaces for the workspace defined in the option file are
listed. For displaying the workspaces for a specific user
the user name can be passed. When passing "’ as user
name or no username all workspaces below the passed
workspace are displayed.

For displaying the complete workspace tree (hierarchy)
you can add the -T option.

Page 92 of 133



Defining data sources

Database and dic-
tionary

The workspace utility allows maintaining workspace hier-
archies for a database, which is defined as data source
in an option file. There are two ways to refer to a data
source. One way is to define the data source in the ap-
plication option file. In this case the data source is
defined in a section that is preceded by the data source
name:

{DataSource1] Data source name

The other way is to refer to a data source defined in a
database catalog by its data source name:

DATA_SOURCE=DataSource1

In this case the data source must be defined in a data
catalog. Data catalogs can be provided locally and on
the server side. In one application, however, you can
refer to only one data catalog. How to define data
sources and file locations in the data and file catalog you
can find in the “ODABANC — Server” documentation.

A dictionary and a database define a data source. While
the dictionary contains the data definitions the database
contains the data. Dictionary and database can be
stored in the same database file but usually they are not.
In any case, each data source definition should contain
a dictionary definition and a database definition:

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat

A data source can be located on a server. In this case
the data source definition refers to the server and a sym-
bolic database path that is resolved by the servers file
catalog:

SERVER_URL=ProjectServer
SERVER_PORT=6123

DICTIONARY=%SAMPLE_DICT%
DATABASE==%SAMPLE_DAT%

Page 93 of 133



WORKSPACE

ACCESS_MODE

NET

The workspace variable defines the basic workspace to
be used in the application. The application can open
workspaces on top of the base workspace but not below.
The defined workspace is either the base for the opera-
tion (when passing a workspace name) or the work-
space for running the operation (when no workspace
name has been passed.

A workspace can be defined only when the workspace
feature is enabled. When not defining a workspace the
database is opened directly.

Default: none

The access mode defines whether the database will be
used in write/update mode or read only. The workspace
utility requires write access except for the list operation.

ACCESS_MODE= Read | Write
Default: Read (for from-data source), Write (for to-data
source)
This option is required when running the database in a
file server or client/server environment for using the
database with more than one user (multi-user access).

NET=YES | NO

This feature is supported under Windows, only. Under Linux,
YES is used, always.

Default (Windows): NO

Page 94 of 133



Option file for DBWorkspace

ODABAN¢G An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section

DICTIONARY= C:\ODABA\ODE.SYS

[DBWorkspace]
DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat
WORKSPACE=Basic_WS

NET=NO

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections for source and target data source.

Page 95 of 133



15 ODABA Script Interface (OSI)

The ODABA Script Interface supports data definitions
and methods (expressions). OSI can be used for running
ad hoc queries or for updating the database.

An OSI script may include local functions and class or
structure definitions, bit it may also refer to resources
defined in the dictionary.

Page 96 of 133



Running OSI

Usage

script_file

ini_file

parameters

entry _point

-DB

Samples

You can run OSI from a command line in DOS or UNIX.
(0 1] script_file ini_file
[ -SP:parameters |
[ -E:entry_point ] [-DB]

Besides the script file, OSI requires at least a dictionary,
which can be defined explicitly or in the option file.

The script file refers to a location where the ODABA
Script file is stored. When not passing an option file or
dictionary path, the dictionary location must be defined
in the script file.

Instead of a dictionary path, an option file can be
passed. The When containing a dictionary location, this
will replace the dictionary location defined in the script
file. When containing a database location, the data base
location in the option file is replaced as well.

Besides database and dictionary, the option file may
contain definitions of system variables, which can be ref-
erenced in the script.

Any number of script parameters separated by comma
might be passed to the script file. When the list contains

wy,

spaces, the option must be enclosed in “:
“-SP:parm1, message text, parm3”

Parameters are passed in the same sequence to the
OSlI-function referenced as entry point.

The entry point is the name of the OSI function that is
called. When no entry point is defined, “main” is sup-
posed to be the entry point.

Entry point names are case sensitive, i.e. when not de-
fining an entry point, the script file must contain an OSI
function with the name ‘main’.

In order to run OSI scripts in debug mode, the debug op-
tion has to be passed.

You will find sample scripts and option files in the ODA-
BANG installation folder under OSl.bat, OSl.ini and Sam-
plenn.osi.

Page 97 of 133



Defining data sources

Multiple data
sources

OSI requires a database defined in a data source. The
data source definition includes at least a dictionary, but
usually it consists of dictionary definition and database
path.

There are different ways of providing data source defini-
tions. Typically, the data source is defined in the script
file or in an option file passed to OSI. In both cases,
there are two ways to refer to a data source. One way is
to define the data source implicitly by defining dictionary
and database in the script or in the OSI section of the ini
file.

The other way is defining the data source explicitly in a
separate section of the ini file. In this case, the data
source is defined in a section that is preceded by the
data source name:

[DataSource1] Data source name

Now, the data source can be referred to by its data
source hame as:

DATA_SOURCE=DataSource1

This way, it is also possible to refer to data sources
defined in the database catalog. When referring to a
database catalog, the option file must contain a catalog
section, that defines the location of the data catalog:

[DATA-CATALOG]

Data catalogs can be provided locally and on the server
side. In one application, however, you can refer to only
one data catalog. How to define data sources and file
locations in the data and file catalog you can find in the
“ODABANC — Server” documentation.

Functions within an OSI script may refer to multiple data
sources. When referring to more than one data source,
the option file should define the required data sources.

The OSI script may refer directly to dictionary and data-
base paths. In this case, the script becomes dependent
on the data location, which can be avoided by referring
to data sources in an option file.

Page 98 of 133



Option file for OSI

ODABAN¢

An option file defines the data source, input and output
files and other process specific parameters. The follow-
ing example refers to the specification of the sample
database source based on an ODABANC database.

[SYSTEM] system section
DICTIONARY= C:\\ODABA\ODE.SYS

[OSI]

DICTIONARY=C:\ODABA\ Sample\Sample.dev
DATABASE= C:\ODABA\Sample\Sample.dat
NET=YES

ACCESS_PATH =Company.employee

[DATA-CATALOG]

DICTIONARY=C:\ODABA\ode.sys
DATABASE= C:\ODABA\Sample\catalog.dat
NET=YES

ACCESS_MODE=Write

Page 99 of 133



16 ODABA Definition Loader (ODL)

The ODABA Definition Loader is used for loading OSI
model definitions. Syntactically, an ODL database model
is based on the OSI script interface language, which is
an extension of ODMG ODL (2003). In contrast to the
OSI utility, ODL does not run queries, but loads a
schema (object and functional model) to an ODABA re-
source database (dictionary).

With ODL you may create a new resource database or
update an existing one.

Page 100 of 133



Running ODL

Usage

script_file

dict_path

ini_file

Options

RN

You can run ODL from a command line in DOS or UNIX.
ODL [ :ini_file | dict_path ] script_file
[-RI-N] [-C] [-S] [-A]
Besides the script file, ODL requires a dictionary, which
can be defined explicitly, in the option file or in the script.

The script file refers to a location where the ODL Script
file is stored. When not passing an option file or diction-
ary path, the dictionary location must be defined in the
script file.

The dictionary path provides the location for the diction-
ary. It becomes necessary, when no dictionary is defined
in the script file. When passing the dictionary location,
the dictionary location in the script file will be ignored.

Instead of a dictionary path, an option file can be
passed. The containing a dictionary location, this will re-
place the dictionary location defined in the script file.

In order to maintain dictionary state and complex data
type states properly, several options might be passed.
When not passing any of those options, the schema
loader fails, when the dictionary is in production state.
When this is not the case, no checks will be performed
and affected data types remain unchecked and not
ready for use.

When the dictionary is in production state, which be-
comes necessary in order to store data in a database,
the schema cannot be updated. In order to update the
schema, the production state might be reset by passing
—R or a new schema version might be created by
passing —N.

After importing schema updates, affected complex data
types (structures) are not considered as checked and
ready. This will cause errors when trying to access data
in a database. In order to prepare structures for data-
base access, the check option (-C) might be passed,
which causes ODL to check the schema, update schema
versions and sets structures to checked and ready.

Page 101 of 133



Samples

After checking the database schema successfully, com-
plex data types are marked as checked and ready, but
the dictionary is not yet in production state. In order to
run a production system with the dictionary, the produc-
tion state should be set, which prevents the dictionary
from critical schema updates. For setting the production
state, this option might be passed.

Passing this option causes the schema loader to prompt
the user for executing actions, which have not been ex-
plicitly requested by corresponding options.

You will find sample scripts in the .../ODABA/Sample
folder.

Page 102 of 133



17 ODABA Shell (OShell)

OShell is a command line utility that allows running most
of the ODABA access functions from a command line. In
contrast to OSI, OShell is not a query tool, but a way to
navigate through a database as you may navigate
through the directory structure on a disk.

OShell needs a data catalog that contains all data
sources to be accessed from the shell. The data catalog
can simply be provided in the option file passed as para-
meter to OShell or in an ODABA data catalog, which is
an ODABA database that holds available data source
definitions.

Running OShell provides access to all data sources
defined in the data catalog.

You can use OShell for testing or examine your data-
bases but also for maintenance purposes or within the
production process. OShell provides reading and writing
access to the database and allows you to do nearly
every thing that you could do within a MS Visual Basic or
C++ program.

Page 103 of 133



Running OShell

Usage

ini_file

script_file

entry_point

-DB

Samples

You can run OShell from a command line in DOS or
UNIX. Before running OShell make sure that a data
catalog is available.

OShell ini_file [ script_file [E:entry point] ] [-DB]

When not passing a procedure name OShell will request
commands from the console.

The option file defines the data sources for the data-
bases and specific OShell parameters. More details on
how to define the option file you can find in “Option file
for OShell”.

You may pass the location of an OShell procedure to be
called when starting OShell. The procedure is a path
name that refers to a OShell script file.

In order to run a specific part of the procedure passed in
script_file, an entry point might be passed.

In order to run imbedded OSI scripts in debug mode, the
debug option has to be passed.

You will find sample procedure calls and option files for
Windows environment in the ODABANC installation folder
under OShell.bat, OShell.ini and OShell.prc (procedure).

Page 104 of 133



OShell Command Overview

You may run OShell from a command line but also as
batch procedure. When running OShell it one or more
contexts might be opened that can be accesses inde-
pendent on each other, i.e. you may run OShell several
times with several data sources simultaneously in one
process.

Command syntax

Command lines consist of a command of function name,

a parameter list and additional options. The complete
syntax is described below:

CMDLine
redir

file name
file path
drive
folders

fext

fsep

fname
fnamext
parameter
connector
value

option

path

[path extension (*)]
navi

dot

path extension
path element
path operand
coll operand
path name
name index
operand list
parm list
parm ext

= string |

= name [

= path operand [ operand list ]
= path name |

l[lpathl]l
['@'] name [ name index ]
'"[' value ']
'('" [parm list] ')'

= value [parm ext (*)]
', ' value

name [option(*)] [redir]

LSS

[parameter (*) ]
file name
file path
[ drive ] folders
name ':'
[ fsep ]
fsep name
l/l | l\\v

fnamext (*) ]

'.'" name

value [connector]

L= | T .1 ‘ l:l

path | constant | '"*' | '&'
'-' name

fname [ fext (*) ]

:= [navi] [path element]

/o

dot (*)
'.' path element

coll operand

Comments

Command script files may contain comments. Lines

starting with // are considered as comment lines. Com-
ments may also be appended at end of command line.

Page 105 of 133



Command name

parameters

options

Command context

As command names one of the supported command
might be used. Also, property handle functions might be
called as soon as a data collection has been opened
(cc).

Besides, some block commands (begin, do) are
provided in order to enter multiple line commands.

Command names may include option variables enclosed
in %...%, which will be replaced by current settings be-
fore analysing the command.

Command names are not case sensitive, but function
names are.

Up to 32 parameters can be passed to a command.
Parameter values may include option variables enclosed
in %...%, which will be replaced by current settings be-
fore analysing the command. Parameters containing
non-alphanumeric values have to be quoted (“...” or *...").

Parameters do not require separators. Some com-
mands, however, use properties and values, in which
case parameters might be connected by connectors:

set OPTION=abc (same as: set OPTION abc)

In fact, the command above gets two parameters (OP-
TION and abc), which can be passed using a connector
in order to increase readability of the script.

Options are introduces by — (e.g. —D1). The options sup-
ported depend on the command called. As well as para-
meters and command name, options may contain option
values which will be replaced before analysing the com-
mand.

When running OShell the shell runs in one or more con-
texts defined by the opened data sources and collec-
tions.

When starting OShell it enters the command context,
which is indicated by the

| obABA> |

command prompt. In this context you may list available
data sources or open a data source. The commands
available in this context you will get when enter ‘help’.

Page 106 of 133



Strings and nu-
meric values

Data source con-
text

Collection state

Parameters passed to a command can be passed as nu-
merical value or string (name, expression). When a
string parameter contains spaces or other non-alphanu-

meric characters, it must be enclosed in “” as:

sf “name > ‘a’ and name < ‘z

Numerical values must be passed just as a number.
String values should be enclosed in single quotes * as

loc ‘Miller|Paul’

Values which are not enclosed in “ are interpreted de-
pending on the context. Within expressions they are
considered as object variables. When being passed as
parameter as in

loc Miller|Paul

it is considered as string value, since it does not start
with a numeric character.

After opening a data source (‘cd’ command) the shell
changes into the data source context, which is indicated
by the data source name in the command prompt:

ODABA>cd SampleDB
SampleDB>

In this context you may list available collections or open
a collection. The commands available in this context you
will get when enter ‘help’.

You may close a data source context using the change
data source (cd) command again:

SampleDB>cd .
ODABA>

After opening a collection (cc command) the shell
changes into the collection context, which is indicated by
the data source name appended by the collection path in
the command prompt:

SampleDB>cc Person
SampleDB/Person>

In this state you may run collection specific commands
as create instance (crt) or copy (cpy) as well as func-
tions supported by OShell.

When OShell is in a data source or collection context,
you can open another data source context without clos-
ing the one currently active.

Page 107 of 133



Multiple data
source context

Collection hierar-
chy

When a data source context is opened you may create
another data source context using the ‘cd’ command
again.

SampleDB >cd SampleDict

SampleDict>

In this case the SampleDB context remains and the
SampleDict context is opened in addition. The shell
switches to the new context. The available data source
contexts can be listed using the ‘cd’ command again:
SampleDict>cd

1: SampleDB
2: SampleDict

The numbers listed in front of the data source name can
be used to redirect command to an inactive data source
or to refer to an inactive data source e.g. in a copy (cpy)
command for the —Dn option.

You may switch to any opened data source context us-
ing the context number:

SampleDict>cd 1
SampleDB>

When a collection has been opened for a data source
you may open another subordinated collection (e.g. chil-
dren for Person)

SampleDB>cc Person
SampleDB/Person>cc children
SampleDB/./children>

This will activate the children collection for an activated
person. Each collection in the hierarchy gets a context
number, which can be displayed using the ‘cc’ command
again:

SampleDB/./children>cc

-0 - Person
*1 - children

The numbers listed in front of the collection name can be
used to redirect command to an inactive collection in the
hierarchy or to refer to an inactive collection e.g. in a
copy (cpy) command.

The ™ indicates the active data collection in the hier-
archy. You may refer to inactive collections in most of
the commands, e.g. for locating an instance in the Per-
son collection:

Page 108 of 133



Commands

Parameters

SampleDB/./children>loc 0 —CO
SampleDB/./children>cc

+0 - Person

*1 - children

““* or ‘+’ in front of the context number indicates whether
an instance is selected for the collection (+) or not (-).

You may also switch to another collection in the hier-
archy using the cc command with the context number:

SampleDB/./children>cc 0
SampleDB/Person>cc

*0 - Person

-1 - children
SampleDB/Person>cc/children
SampleDB/./children>

Switching between collections will not close collections
in the hierarchy. You may close a collection using the
change collection (cc) command passing one or more
dots (.):

|SampleDB/./children>cc . |

The command will close as many collections in the hier-
archy as dots have been passed in the command. Thus
you may close any number of collections in a hierarchy.

The change collection command refers always to the
last opened collection context, i.e. independent on the
collection selected as active collection the command will
close or open collections relatively to the last collection
opened.

OShell allows running a number of pre-defined com-
mands as well as most of the ODABA access functions
(odaba API). OShell commands are a number of pre-
defined statements that allow you to connect to data
sources and collections.

All commands are not case sensitive, i.e. you may enter
command names in capital letters or not. Command
parameters, however, are usually case sensitive, except
you refer to command names as parameter (as for the
help command).

When typing an empty command (enter), the last com-
mand entered is called again.

Commands can be called with different parameters and
options. Parameters passed with the command must be
passed in a defined sequence. Parameters are usually

Page 109 of 133



case sensitive and must not contain blanks. Parameters
containing blanks (e.g. expressions for conditions) must
be enclosed in quotes (“parameter with blanks”).

In some cases commands differ between parameter
types. Thus numbers are usually interpreted as numer-
ical values. Thus, the locate command (loc) works differ-
ently when being called with 0 or ‘0’ as parameter::

SampleDB>cc Person
SampleDB/Person>loc 0
SampleDB/Person>loc ‘0’

When calling the locate command with 0 it will locate the
first instance in the collection. When calling it with ‘0’ it
tries to locate an instance with the key value 0, which is
usually different from the first instance.

Numerical parameters

Any parameter beginning with a numerical value is inter-
preted as integer number. For passing negative numer-
ical values the minus (-) must be appended to the value.

String parameters

Parameters beginning with * are interpreted as strings.
String parameter, which contain ‘-characters again, must
duplicate the ‘_sign.

Context variables

Any parameter beginning with a non-numerical character
and not with — or ‘ is considered as context variable. The
value of a context variable is determined as follows:

1. When the run state is a collection state and the
variable is a structure variable defined in the
structure of the active collection, the para-
meter value is taken from the selected in-
stance.

2. Otherwise, it is checked, whether the variable is
a defined system variable (e.g. set by the
‘set’ command). In this case the parameter
value is taken from the current value of the
system variable.

3. When neither (1) nor (2) return a variable value,
the variable is considered as string variable,
i.e. the parameter value is the string passed.

Options Options can be passed in any order and at any position

Page 110 of 133



after the command name. Options are preceded by a ‘-
character (as —D0).

Common OShell  common commands may be called without an opened
commands data source.

Call procedure file
Change data sources
Run command block
Leave block

Do when true

Do while true
Terminate block
Return from procedure
Exit application

Do for all instances
List data sources
Load procedure file
Pause processing
Terminate OShell
Redirect output

Set variable

Show help

Show commds
Display formatted data

call file_name[@entry_point]

cd [dsname|*|dsid|.] -Dn

begin | do (also in connection with fa, if, while)
LeaveBlock | Ib

if expression command -Dn - Cn

while expression command -Dn -Cn -In

end

return

exit

fa command -Dn -Cn -In

Id

load fname|file_name

pause

quit | g

redir [path]

set var_name [value] | set [var_name=value]
help [command] -d -a -e

echo [on|off|'any text']

format | f fstring [parm ... parm] -Dn -Cn

Data source com- Data source commands are provided in order to manage
mands data sources under OShell

Change collection

Run database action
List collection names
Run object space action
run OSI function

cc prop_path|coll_id|*|& -Dn

databaseAction name [parm1...parmN] -Dn
Icn [mask] -Dn -Cn

objectSpaceAction name [parm1...parmN] -Dn
osi funct_name

run OS| statements osi do
expression statements
end
Collection com- Collection commands are provided in order to manage
mands collections under OShell

Change sort order
Copy instance
Create instance
Delete instance

Run instance action
List attribute names
List instances

co key_name [gen_attr_val]-Dn -Cn

cpy keyval | position | . | * [new_key] -Dn -Cn
crt [keyval] -Dn -Cn

del keyval | pos | .| *-Dn -Cn

del keyval | pos -E

instanceAction name [parm1...parmN] -Dn -Cn
lan [mask] -Dn -Cn

li [p[osition]] -Dn -Cn -In

Page 111 of 133



List keys

List sort orders
Locate instance
Move instance
Position foreward
Position backward
Show attribute values
Run property action
Set attribute list
Set attribute value
Set filter condition

Ik -Dn-Cn

lo -Dn -Cn

loc [key_value|pos] -S -Dn -Cn

mov keyval|position|.|* [new_key] -Dn -Cn
next [count] -S -Dn -Cn

prev [count] -S -Dn -Cn

print|p [varname | *] -Dn -Cn
propertyAction name [parm1...parmN] -Dn -Cn
sal attrname1 ... attrnameN -A -Dn -Cn
sav attrname [=] value -Dn -Cn -Q
SetFilter | sf [condition] -Dn -Cn

Debug com- When running OShell with debug option (-DB), several
mands debug commands are available

List call stack

Set break point

Break at each statement
Watch variable

Delete watch variable
Continue application
Reset break point
Leave function

Change stack frame
Go to line

Skip statement

List current function
List current line

Load procedure file
Execute next statement
Show attribute values
Terminate debugging
Run application
Change stack limit
Step into function

backtrace | bt [count]

break | b [[class::]fname] [line] [proc_name]|]
breakAlways | ba

watch|w

deletewatch|dw

continue | ¢

disable | d [[class::]fname] [line_number]
finish | fi

frame | f [number]

jump | j [number]

jumpOver | o

list | | [[class::]fname]

listCurrent | Ic

load [class::]fname | file_name

n

print | p [varname | *] -Dn -Cn

quit | q

run|r

stackLimit | sl [number]

step | s

General command Most commands support two additional options for

options identifying the data source or re-directing the output.
Output re-direc-  The output from a command can be re-directed to a file
tion or stream. Output re-direction is passed as last option in

a command line.

| ODABA/Sample/Person>1i >>c:/temp/list.txt |

This directs the output of the list command to the file
list.txt. Redirection options will not delete or empty the

Page 112 of 133



Data source

Procedures

call

file, when it does already exist and contains data.

For redirecting the output permanently, you may use the
“redir’ command.

|ODABA/Sample/Person>redir c:/temp/list.txt |

In this case the output is redirected to the file defined in
the redirection path until you define another permanent
redirection or terminate the redirection with

|ODABA/Sample/Person>redir |

Permanent redirection of the output is also reset at the
end of a do-block, when being specified within the block
or at the end of a called procedure, when being activ-
ated within a procedure.

By default the data source is defined by the selected
database context, which is displayed in the promt line.
Most commands, however, allow referring to another
opened data context by the data source (-D) and the col-
lection (-C) option.

The data source option —Dn refers to the data source,
which is shown as data source n with the “cd” command.
The collection option —Cn refers to the collection in the
referenced data source context, which is listed as collec-
tion number n with the “cc” command. When passing the
collection option without a data source option (-Cn,
only), a collection in the current collection hierarchy can
be referred to.

Moreover, you may define batch files, which can be
called from the command line or passed as parameter.

Within a batch file you may define any number of sub-
procedures. Sub-procedures can be called from within
the batch file but also from other batch files.

Besides commands acting directly on data sources or
collections OShell supports a number of meta-com-
mands. Meta commands allow controlling the processing
in a procedure (batch file).

To invoke a procedure or sub procedure you can use the
call command.

|ODABA>call c:\ODABA\sample.prc |

For running the procedure from a certain entry point in
the procedure you may append the entry point name to
the file name:

Page 113 of 133



load

Comments

echo

Entry points

return

begin, do, end

|ODABA>call c:\ODABA\sample.prc@ListPersons |

For running a procedure several times you may load
procedures to the procedure cache. In this case the pro-
cedure is read once and removed from the storage when
closing OShell.

ODABA>load c:\ODABA\sample.prc
ODABA>call @ListPersons

When calling a loaded procedure you must always use
the entry point character ‘@’ with the entry point name.

You may insert comment lines at any point in the pro-
cedure. Comment lines must begin with one of the fol-
lowing characters ! * / # ; or ‘ in the first position of a
command line. Comments are not executed but dis-
played when echo is on.

The echo command allows controlling whether loaded
procedure statements or entered statements will be dis-
played on the console or not.

Entry points in a procedure can be used to run state-
ments in a procedure from a certain entry point. Entry
point names are preceded by an entry point character
‘@’ and must begin in the first column of a command
line.

@Samplel
cd SampleDB
cc Person
return

Now you may call the procedure with entry point
sample1 (e.g. after loading the procedure with the load
command):

ODABA>call @Samplel
SampleDB/Person>

The result in this case is the opened Person collection.
Note, that entry point names are case sensitive.

When calling a sequence of statements within a proced-
ure, it should be terminated with a return command,
which causes the call-command to terminate the pro-
cessing. No return is required, when the procedure or
sub-procedure terminates at end of file.

OShell supports two block commands, which allow de-
fining blocks of statements within a procedure.

Page 114 of 133



leave

For all (fa)

@Sample do
do
cd SampleDB
cc Person
end
return

The do-block loads the current state on a stack, and re-
loads it when leaving the block. Thus, changes of the
run state made in the procedure are not visible when
leaving the procedure. Calling this entry point would re-
turn the following state:

ODABA>call @Samplel
ODABA>

In this example, no data collection is opened after leav-
ing the do block, since the previous state has been re-
loaded from the stack. Using a begin-block instead:
@aSmplel
begin

cd SampleDB

cc Person
end
return

And calling it from the command line, will result in an
opened data source and collection instead.

ODABA>call @Samplel
SampleDB/Person>

You may leave a do- or begin-block at any point using
the ‘leave’ command. The ‘leave’ command will leave
the current block only and continue with the command
after the ‘end’ command. For leaving the called proced-
ure you may use the ‘return’ command.

The ‘for all command (fa) allows running a single com-
mand or a command block for all instances in a collec-
tion.

@aSmple fal
begin
cd SampleDB
cc Person
fa lav name
end
return

This procedure will list the name attribute value (lav) for
each person in the person collection. If you want to run
more than one command for each instance in the collec-

Page 115 of 133



tion, you can define a ‘do’ or ‘begin’ block instead.

@aSmple fall
begin
cd SampleDB
cc Person
fa begin
lav name
lav first name
end
end
return

‘do’ blocks should be used only, when you change the
run state in the block, since do blocks will reduce the
performance always. When calling a ‘do’ block for an ‘fa’
command will create only one stack for the complete
loop. If you want to restore the run-state for each in-

stance you need to define an inner fo block:

@Sample fal
begin
cd SampleDB
cc Person
fa begin
do
cc children
fa begin
lav name
lav first name
end
end
end
end
return

This example will list the names and first names for all
children of all persons. When not using the inner ‘do’
block, in which the collection context is changed, you
must close the children collection before leaving the

loop:

Page 116 of 133



@Sample fa2
begin
cd SampleDB
cc Person
fa begin
cc children
fa begin
lav name
lav first name
end
cc
end
end
return

Since no stack is provided in this example, the proced-
ure must close the collection before opening it in the
next iteration step. Since opening collections is rather
time consuming, the best way for defining nested loops
is using the collection context:

@Sample fal
begin
cd SampleDB
cc Person
cc children
cc 0
fa begin
cc 1
fa begin
lav name
lav first name
end
end
end
return

The ‘if command enables conditional processing of
statements in a procedure. The condition passed to an
‘if command is either an expression or the variable ‘suc-
cess’. The ‘success’ variable contains the success value
from the last command executed, which is usually true
(success) or false in case of an error.
@Sample ifl
begin a

cd SampleDB

if success cc Person
end
return

You may also check the ‘error’ variable, which is the op-
posite of the success variable (true in case of an error

Page 117 of 133



while

and false otherwise).

Instead of ‘success’ or ‘error’ you may define an ODABA
OQL expression as condition. This is possible, however,
only, when the run state is a collection state.
@Sample if2
begin
cd SampleDB
if success cc Person
loc 0
if “children.GetCount > 0” cc children
end
return

In this case the children collection is collected only,
when the first person in the collection has children.

Expressions must be enclosed in quotes (**), since the
syntax within the expression is unknown to OShell. You
cannot refer to success or error variables in an expres-
sion, since those variables are special OShell variables
and not known in the OQL environment.

As well as for the for all' command (fa) a ‘do’ or ‘begin’
block can be defined for the if command, when a num-
ber of commands should be processed conditionally.

@Sample if3
begin
cd SampleDB
if success cc Person
loc 0
if “children.GetCount > 1” do
cc children
fa lav name
end
end
return

This example will list the names for all children for per-
sons that have more than one child.

The ‘while’ command allows defining conditional loops. A
command or block of commands is executed as long as
the condition in the while command is true.

Page 118 of 133



osi

@Sample whilel
begin
cd SampleDB
cc Person
loc 5
while success begin
next
lav name
end
end
return

This loop shows the name for all persons except the first
five ones. Since next returns success false after the last
instance the loop can be terminated by means of the
success value. Practically the while command covers the
‘for all’ (fa) command, but in many cases the ‘fa’ com-
mand is more comfortable.

Instead of the success or error value the condition can
be expressed in terns of ODABA OQL expressions.

The osi-command allows invoking an OSI query defini-
tion. OQL queries can be invoked as simple commands
but also in an begin/do block. An OSI query differs from
a property path in its syntax, which is compliant to the
OMG standards.

Passing a simple query can be specified as follows

@Sample oqgll
ogl from(Person) select (name,street)
return

More complex OQL statements can be defined in an oql-
block, which is either a do- or a begin-block

@Sample oqgl2
ogl begin
select (Name = name,
char (100) Address = street+number)
from(Person)
where (name >= ’'B’ and name < ’C’
ToFile (e:\result.csv)
end
return

An OQL statement without an output clause (ToFile) cre-
ates a result collection, on which further collection com-
mands can be applied.

Similar to the cc-command, the oqgl-command creates a
subordinated collection relative to the current data

Page 119 of 133



Functions

Property

Database

source context. You may close the collection with

|cc . |

Otherwise, the collection is closed automatically at the
end of the block, when the block is a do-block. It remains
open after the end of a begin-block.

When using the ToFile clause, the collection is an ele-
mentary value, the number of selected instances, which
is returned by the ToFile-operation.

Queries can also be expressed as property or operation
paths:

|cc “from(..) .select (..) .where (..) .ToFile (..)"” |

More details for the OQL specification rules you may find
in the “ODABA Query Language”.

Many functions from the odaba interface access classes
can be called directly from the command line. In contrast
to command names, function names are always case
sensitive.

When passing parameters to functions, those may refer
to constant values or properties. | most cases, you can-
not pass expressions or access path as property para-
meters. This limits the use of function calls on the com-
mand line.

When calling a function directly from the command line
becomes impossible because of these restrictions, one
bay always use an osi do ... end block. Within do and
end, command line limitations do not exist.

Property functions can be called when the shell is in the
collection state, only.

Database and object space functions can be called as
soon as a data source has been opened.

Page 120 of 133



Defining data sources

Data catalog

Option file

OShell works on a number of data sources defined in a
data catalog. The data catalog is either part of the option
file, where each data source is described in a separate
section beginning with the data source name or an
ODABA database catalog, which is an ODABA database
that contains data source definitions. You may either
refer to a data catalog or to data sources defined in the
option file, but not both.

Data catalogs can be provided locally and on the server
side. In one application, however, you can refer to only
one data catalog. How to define data sources and file
locations in the data and file catalog you can find in the
“Option files” documentation.

Defining data sources in the option file instead of a data
catalog requires a DATA_SOURCES variable in the
[OShell] application section that lists all data source
names separated by comma:

DATA_SOURCES=DataSource1,DS2,....

For each data source name in the list an appropriate
section with the same name must be defined. The name
list provides the data source names listed when using
the ‘[d’ command. You may access data sources defined
as section but not listed in this list by using the ‘cd’ com-
mand, but they are not displayed when listing all avail-
able data sources.

Page 121 of 133



Option file for OShell

ODABAN¢

An option file defines the data source, input and output

files and other process specific parameters. The follow-

ing example refers to the specification of the sample

database source based on an ODABA database.
[SYSTEM] system section

DICTIONARY=C:\ODABA\ODE.SYS
ODABA_PATH=C\ODABA

PROGPATH=C\ODABA
[OSHELL]

[DATA_CATALOG]

DICTIONARY=C:\ODABA\ODE.SYS
DATABASE= C:\ODABA\Sample\Server.Cat

NET=YES

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections for source and target data source.

Page 122 of 133



18 Simple stress test (StressTestS)

StressTestS allows testing the performance in a local or
client/server environment. The simple stress tests is usu-
ally reading instances from an extent or any other collec-
tion, which can be defined as an access or operation
path.

The test may run in single or multiple thread environ-
ment.

Running the test will read the instances from the collec-
tion one by one until the number of instances to be read
has been exceeded.

The test program allows starting a number of concurrent
threads, which are sharing the connection to the server.
In order to run multiple connection tests, several in-
stances of StressTestS might be started.

In order to perform more sophisticated tests, you may
call StressTestM, which allows running multiple query
tests.

Page 123 of 133



Running StressTestS

Usage

ini_file

query path

distance

clients

objects

You can run StressTestS from a command line in DOS
or UNIX. Before running StressTestS, make sure that
the data source is available.

StressTestS ini_file query path
[-D:distance [-C:clients [-O:objects] ] ]
The option file defines the data sources for the data-
bases and specific test parameters. More details on how

to define the option file you can find in “Option file for
StressTestS”

The query path (access path) defines the collection to be
processed in the performance test. Usually, the access
path refers to an extent. Instead of an extent you may
define an access or operation path that refers to more
complex queries.

Since the performance depends much on the instance
type (i.e. on the number of shared base structures and
generic attributes).

is the time in 1/10 seconds between starting two sub-
sequent queries.

Default: 10 (1 second)
is the number of clients that are running in the test.
Default: 1000

is the maximum number of object instances to be read
per client (only when running with extends).

Default: 100

Page 124 of 133



Defining data sources

Database and dic-
tionary

Options
VERSION

StressTestS works on data base defined in a data
source in an option file. You can define the data source
directly in the option file or refer to an existing data
source in the data catalog. The section in the option file
describing the data source must start with

[StressTestS]

For referring to a data source by its data source name
you must define the data source reference in the option
file as:

DATA_SOURCE=DataSource1

In this case the data source must be defined in a data
catalog. Data catalogs can be provided locally and on
the server side. In one application, however, you can
refer to only one data catalog. How to define data
sources and file locations in the data and file catalog you
can find in the “ODABANC — Server” documentation.

A dictionary and a database define a data source. While
the dictionary contains the data definitions the database
contains the data. Dictionary and database can be
stored in the same database file but usually they are not.
In any case, each data source definition should contain
a dictionary definition and a database definition:

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample/Data\Sample.dat

Data sources can be located on a server. In this case
the data source definition refers to the server and a sym-
bolic database path that is resolved by the servers file
catalog:

SERVER_URL=ProjectServer

SERVER_PORT=6123

DICTIONARY=%SAMPLE_DICT%
DATABASE==%SAMPLE_DAT%

Some options that can be defined in a data source are:

Internal database version number when the database is
using version features. The version number allows copy-
ing the resource database according to a historical state.

VERSION=version

Page 125 of 133



ACCESS_MODE

NET

Default: current version

The access mode defines whether the database will be
used in write/update mode or read only. When updating
data in the expression the from-data source must be
defined with Write option.

ACCESS_MODE= Read | Write

Default: Read (for from-data source), Write (fot to-data source)

This option is required when running the database in a
file server or client/server environment for using the
database with more than one user (multi-user access).

NET=YES | NO

This feature is supported under Windows, only. Under Linux,
YES is used, always.

Default (Windows): NO

Page 126 of 133



Option file for StressTestS

ODABAN¢

An option file defines the data source, input and output
files and other process specific parameters. The follow-
ing example refers to the specification of the sample
database source based on an ODABANC database.

[SYSTEM] system section
DICTIONARY= C:\\ODABA\ODE.SYS

[StressTestS]

DICTIONARY=C:\ODABA\ Sample\Sample.dev
DATABASE= C:\ODABA\Sample\Sample.dat

NET=YES

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections.

Page 127 of 133



19 Multiple Query Stress Test
(StressTestM)

StressTestM allows testing the performance in a local or
client/server environment. The multiple query stress
tests is usually referring to one or more queries (OSI ex-
pressions) defined in the resource database or in a
folder.

Running the test will process the defined queries as
many times as requested in the repetition parameter.

The test program allows starting a number of concurrent
threads, which are sharing the connection to the server.
Providing multiple queries in a folder will assign one
query to each thread. When there are more threads than
queries, one query might be assigned to several
threads.

In order to run multiple connection tests, several in-
stances of StressTestS might be started.

Page 128 of 133



Running StressTestM

Usage

ini_file

query_path

distance

clients

repititions

You can run StressTestM from a command line in DOS
or UNIX. Before running StressTestS, make sure that
the data source is available.

StressTestM ini_file query path
[-D:distance [-C:clients [-R:repetitions] ] ]

The content of the option file for StressTestM is de-
scribed in the following section.

The option file defines the data sources for the data-
bases and specific test parameters. More details on how
to define the option file you can find in “Option file for
StressTestM”

The query path defines the location where the query to
be executed is stored. Instead of defining a file path, you
may also define a scoped query name containing the
class and the expression name (e.g. Person::Test).

The query path may also refer to a folder that contains
queries for each client. The folder must contain query
definitions, only, which have been prepared for the test.
When more clients are executed than there are queries
in the folder, StressTestM starts from the beginning after
running all queries.

is the time in 1/10 seconds between starting two sub-
sequent threads.

Default: 10 (1 second)

is the number of clients that are running in the test.
Default: 1000

is the number of query calls to be processed.
Default: 100

Page 129 of 133



Defining data sources

Database and dic-
tionary

Local configura-
tion

Client/server con-
figuration

Options

StressTestM works on data base defined in a data
source in an option file. You can define the data source
directly in the option file or refer to an existing data
source in the data catalog. The section in the option file
describing the data source must start with

[StressTestM]

For referring to a data source by its data source name
you must define the data source reference in the option
file as:

DATA_SOURCE=DataSource1

In this case the data source must be defined in a data
catalog. Data catalogs can be provided locally and on
the server side. In one application, however, you can
refer to only one data catalog. How to define data
sources and file locations in the data and file catalog you
can find in the “ODABANC — Server” documentation.

A dictionary and a database define a data source. While
the dictionary contains the data definitions the database
contains the data. Each data source definition should
contain a dictionary definition and a database definition:

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE=C:\ODABA\Sample\Data\Sample.dat

Running StressTestM in a local environment will re-use
the dictionary on the client side. For the database copies
for database objects are created for each thread.

Data sources can be located on a server. In this case
the data source definition refers to the server and a sym-
bolic database path that is resolved by the servers file
catalog:

SERVER_URL=ProjectServer
SERVER_PORT=6123

DICTIONARY=%SAMPLE_DICT%
DATABASE==%SAMPLE_DAT%

Running StressTestM in a client/server environment will
create a new connectin, i.e. a new dictionaty and data-
base handle for each client,

Additional options that can be defined in a data source

Page 130 of 133



VERSION

ACCESS_MODE

NET

are:

Internal database version number when the database is
using version features. The version number allows copy-
ing the resource database according to a historical state.

VERSION=version

Default: current version

The access mode defines whether the database will be
used in write/update mode or read only. When updating
data in the expression the from-data source must be
defined with Write option.

ACCESS_MODE= Read | Write

Default: Read (for from-data source), Write (fot to-data source)

When running StressTestM with more than one thread,
this option should be set to YES to enable multi user ac-
cess for the database.

NET=YES | NO

This feature is supported under Windows, only. Under Linux,
YES is used, always.

Default (Windows): NO

Page 131 of 133



Option file for StressTestM

ODABAN¢

An option file defines the data source, input and output
files and other process specific parameters. The follow-
ing example refers to the specification of the sample
database source based on an ODABANC database.

[SYSTEM] system section
DICTIONARY= C:\\ODABA\ODE.SYS

[StressTestM]

DICTIONARY=C:\ODABA\Sample\Sample.dev
DATABASE= C:\ODABA\Sample\data\Sample.dat

NET=YES

When referring to data sources defined in the data cata-
log on the server you need not to define the data source
sections.

Page 132 of 133



Running Licence

owner_ini_file

Option file

20 License Utility (Licence)

Usually ODABANC applications require a licence from the
software provider. Licences are a combination of user
name and licence number. Each licence number works
for the defined user name, only.

For licensing an ODABANC product you have to run the
licence utility with the licence option file provided by the
software vendor.

You can run Licence from a command line in DOS or
UNIX. Before running Licence make sure that the data
sources are available.
C:\ODABA\Licence.exe owner _ini_file

Licence.exe requires a licence.ini file in the same folder
where Licence.exe is located. Such an option file has
been provided with the installation on the ODABANC in-
stallation path. When ODABANC s not installed on the
default installation path this file may need some modific-
ations. It is not updated automatically.

We suggest to store the Licence.ini, the owner_ini_file
and the Licence.bat to your ODABANS installation folder
and to run Licence.bat.

The owner option file defines the owner and the licence
numbers for the packages that need licences. This op-
tion file is provided by the software vendor.

An option file defines the data source, input and output
files and other process specific parameters.

[SYSTEM] system section

DICTIONARY= C:\ODABA\ODE.SYS
[Licence]
DICTIONARY=C:\ODABA\Sample\Sample.dev

Page 133 of 133



	1 Introduction
	2 Common Features
	Run-time information
	Configuration files

	Create new database
	ODABA Server (Server)
	Server Commands
	Server Settings
	Option file for Server

	3 ODABA Server Service (ODABAServer)
	ODABAServer Service Settings
	Option file for ODABAServer

	4 Setup Replication Database (DBReplication)
	Configure Replication Clients

	5 Database Set-up (SetupDB)
	Running SetupDB
	Defining data sources
	Defining Copy Sequences
	Option file for SetupDB

	6 Database Copy (CopyDB)
	Running CopyDB
	Defining data sources
	Defining Copy Sequences
	Replace options
	Option file for CopyDB

	7 Resource Database Copy (CopyResDB)
	Running CopyResDB
	Defining data sources
	Option file for CopyResDB
	Use Cases for CopyResDB

	8 Pack Database (PackDB)
	Database Backup (BackupDB)
	Running BackupDB
	Option file for BackupDB

	Database Restore (RestoreDB)
	Running RestoreDB
	Option file for RestoreDB

	Check Database Consistency (CheckDB)
	Running CheckDB
	Option file for CheckDB

	9 Reset pending key locks (ResetKeyLocks)
	10 Database System Information (DBSystemInfo)
	11 Database Statistics (DBStatistics)
	12 Dictionary Statistics (DBDictStatistics)
	13 Version administration (DBVersion)
	14 Workspace Utility (DBWorkspace)
	Defining data sources
	Option file for DBWorkspace

	15 ODABA Script Interface (OSI)
	Running OSI
	Defining data sources
	Option file for OSI

	16 ODABA Definition Loader (ODL)
	Running ODL

	17 ODABA Shell (OShell)
	Running OShell
	OShell Command Overview
	Defining data sources
	Option file for OShell

	18 Simple stress test (StressTestS)
	Running StressTestS
	Defining data sources
	Option file for StressTestS

	19 Multiple Query Stress Test (StressTestM)
	Running StressTestM
	Defining data sources
	Option file for StressTestM

	20 License Utility (Licence)

