
 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

Test Framework

ODABANG

- 2 -

Summary

In order to manage different kind of tests, ODABA provides a command line test
framework combined with a TestBrowser. TestBrowser is a GUI tool based on a
data stored in the file system in order to run an independent external test frame
work.

The interface to the test frame work is a work area directory containing test data
and test procedures. Test data and test procedures are copies from test suites and
test cases represented as directories in the file system. TestBrowser does not care
about content (test case description, test data, procedures etc.) but provides fast
access to test resources, prepares test runs and registers results for creating test
logs and protocols.

For executing tests, any test framework with a command shell interface may be
used. The TestBrowser delivery comes up with a simple command shell based test
framework, that might be used for unit tests as well as for component or system
tests.

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2015

 -

Contents
1Rules and principles for test frameworks...4

1.1Principles for arranging tests in test frameworks..5

1.1.1Test suite and test case..6

1.1.2Running a test..9

1.1.3Managing tests within a test run...10

1.1.4Advanced concepts..11

1.2Common example...14

1.2.1Running a test..17

1.2.2How to use the example frame work..19

2Test framework actions (Linux)..25

3Test framework actions (Windows)..32

4TestBrowser...38

4.1Using TestBrowser..40

4.1.1Creating a new test environment..40

4.1.2Rebuild test database from directories...53

4.2Action reference..54

4.2.1Running ODABA tests..54

4.2.2Main menu and main toolbar..55

4.2.3Test suite tree...56

4.2.4Edit test suite, test case and other directories..60

4.2.5Edit file content...65

4.2.6Test suite tree...66

4.2.7Run entry..69

4.2.8Test run..74

4.3Database access..77

4.3.1Database model...78

4.3.2Accssing data in TestBrowser database...79

- 4 -

1 Rules and principles for test frameworks

Although, testing is not only related to IT projects, this section mainly refers to
software tests, especially considering an approach to automated tests.

The first topic explains basic concepts and common rules for test frameworks. In
the second topic, an example based on command shells (cmd, sh, bash etc.)
illustrates, how to provide a simple test framework by means of shell procedures.
The last topic describes some use cases and how to modify the example in order
to achieve more appropriate results.

The concepts and examples mainly are related to black box tests, which are
typically used for component or system tests. The ODABA API test suite is also
demonstrates the use of TestBrowser for running unit tests together with
component and system tests.

 -

1.1 Principles for arranging tests in test frameworks

The test framework is an appropriate environment, which allows running
requested test scenarios. The test framework controls test runs including any
number of test suites and manages test resources for running tests. Ideally, the
test framework also communicates with the test management in order to return
results for executed tests or test runs.

A simple test framework is the command shell (bash, cmd or other). Depending on
implementation language and type (GUI or command line components) one may
also refer to more advanced test frameworks (as Abbot, OpenCTF, Fitnesse etc.).
Common principles can be identified in different frameworks. Because of better
transparency, command shell procedures (bash, cmd) are used for providing
essential test framework functions.

The task of a test framework is to perform tests conceptually described in test
cases. Usually, test cases for component tests describe the way to test the
component against specifications in requirements. In case of requirement driven
tests, for each requirement any number of test cases may be defined. A test case
defines a specific test aspect (for a requirement), e.g. borderline checks for a
value or parameter. In order to completely test a test case, several tests may be
necessary. A test provides rules (actions) and test data for running the test and
expected test results.

Similar test cases are collected in test suites. Tests suites may form hierarchies by
defining upper test suites containing a number of similar subordinated test suites.
In order to execute automated tests, test suites are provided in a test framework. A
test suite is the environment that provides necessary resources for running one or
more test cases.

Test suites may be arranged in hierarchies, where each test suite includes all
subordinated test suites. TestBrowser as well as the test frame work expect one
and only one topmost test suite, which is called main suite.

A test run is the execution of a number of tests defined in one or more test suites.
Within a test run any number of tests from different test suites may be collected.
Typically, a test run, contains all tests for a test suite and its subordinated test
suites.

- 6 -

For supporting statistics on test runs and for comparing test runs, results of each
test run need to be stored. In the example, test run results are stored in a directory
structure test run identifier/test identifier, but any other systematic including test
run and test identifiers might be used. .

In order to support automated tests, naming conventions will help a lot. Usually, it
does not matter, which naming conventions are agreed upon, as long as names
can be filtered by means of regular expressions (e.g. having a specific prefix).

1.1.1 Test suite and test case

A test suite covers different kind of resources to run tests and provide results in a
proper way. Each test case belongs to a test suite that provides common
resources for test cases described below the test suite. Usually, a test suite covers
one or more test cases. Hence, test cases may extend or overwrite test suite
resources by adding additional resources or replacing existing resources. Test
suite and test case provide the following kinds of resources:

 Tests - Implementation of one or more tests to be executed within the test
suite

 Test set - Input data required for running the test
 Actions - Actions provided for running the test
 Expected output - Expected output for the test

For each test run following resources are typically created:

 Test output - Output data created by the test run
 Reports - log and result files

Within a test suite, a number of test cases, which refer to the test set of the test
suite, may be executed by calling appropriate actions. A test defines the sequence
of action calls. Each test run creates test output. Test output will be compared with
expected output and the result of comparison is written to a result file.

Ideally, a separate location (directory) is defined for each element type. Depending
on kind of processing, other elements may be added to a test suite.

In order to mark a directory as suite, a file suite has to be created in the directory.

Test

A test is described as a sequence of actions to be executed. The execution of a
test takes place within a test run for the test or a test suite. In the ODABA test
framwork tests are defined as run actions for a test case or a test suite.

Each test execution within a test run returns either true or false. The values may
be named differently (e.g. success or failed as in the example), but running a test
always returns one of these result values. When a test has failed (false), it means
that it did not match the expected test output. In case of testing an error situation,
expected output may contain an error message or code and the test returns true,

 -

when the expected error has been produced. In order to provide more information
for false tests, one may add additional information.

The result of each test is as to a result data for the test/test run. In addition, each
test should provide a protocol (log file) when being executed (e.g. start and stop
time for the test).

Test set

A test set provides the data for running all test cases defined in a test suite. Test
data defined for the test suite must not be complete, i.e. it may be extended or
replaced by each single test case. Test sets are mainly a mean for reducing the
amount of test data, i.e. reducing costs for test data maintenance. Local test set
for a test case or test suite is defined in the data directory.

The final test set for a test results is a combination of test sets of all test suites in
the test suite hierarchy, while files in test sets on lower level in the hierarchy
overwrite files in higher test suite levels.

Before running a test, test resources are copied to a test work area, where the test
will be executed.

Actions within a test suite

In order to run tests within a test suite, several actions may be defined. It does not
matter, how actions are implemented, but it should be as less and as simple as
possible. There is a typical scenario, which is referred to in the example and which
is quite sufficient for many tests. This scenario consists of following actions:

 preprocessing - Run special (sub)actions for preparing test case data.
 run - Run the required test functions.
 postprocessing - Run special actions after running the test. Typically,

this action compares test results with expected test results.

Actions are implemented in order to be executed within a single test. Actions do
not manage test runs for one or more test cases. For this purpose, the test frame
work provides appropriate techniques (command line procedures). The example
provides a number of procedures (bash or cmd files) for managing test suites
under Linux and MS Windows.

Since actions defined within the test suite may be overloaded, those are called
dynamic actions. Actions or procedures for performing test framework tasks are
called global actions.

Expected output

Expected output describes the expected result of a test being executed. This may
be the value returned from a program or one or more output files created by the
test. Typically, expected data will be compared with output data produced by
running test. When the output and expected data are the same, the test returns
true, otherwise false. Locally defined expected output is defined in the expected
directory.

- 8 -

Often, this is not as simple, since comparing data may include removing disturbing
parts in the test output (e.g. creation time stamp for an output file). This does not
change principles used for comparing test output, but evaluation technologies,
only.

Similar to test sets (test data), expected data is inherited from the test suite
hierarchy, i.e. common expected test data may be provided on higher level test
suites.

Test output

The location for storing test output in a common sense depends on the component
or unit to be tested. Test output may be a return code, but also a collection of files
or any other kind of electronic readable output. As soon as test output is not
readable (e.g. a test may produce a beep), it becomes more difficult running
automatic tests.

When running tests in a work area, output will be created in the work area. In order
to save more detailed information for a test run, relevant part of output may be
copied to a location identified by test run and test or test suite identifier.

Results

Results are created by test runs and are stored on test run/test level. Usually,
there is a result file containing the result (true or false) for each test executed.
Moreover, a summary file may be provided for the test run containing e.g. start and
stop time for each test, duration or other relevant information.

Result and log file content refers to common test run information not depending on
component or component properties.

1.1.1.1 Hierarchical test suites

When considering several hundred or thousand test cases, maintaining
corresponding resources may become a problem. Test case resources may be
reduced by arranging test suites similar to requirements and test cases in
hierarchies. This also allows introducing advanced testing features as test suite
inheritance.

E.g. a test suite defined for value domain check that refers to 5 subordinates test
cases (defining tests for lower than or equal to minimum value, between minimum
and maximum and equal to or greater than maximum) may share its data with
another value domain check by using the same parent test suite.

Finally, how test suites are structured, depends on practical requirements. In
general, test suites are required when resources for tests differ, i.e. within a test
suite, all tests refer to the same test set and same set of expected results, but may
be called in different ways.

 -

Hierarchical test suites provide the advantage, that resources may be inherited
from test suite parents, which allows defining reusable test resources.

 main_suite - providing default resources
 test suite 1

 test suite 11
 ...

 ...
 test suite n

Since running a test suite includes running all test cases and related tests defined
in subordinated test suites, too, ordering test suites in a hierarchy provides an
additional way of filtering a set of test suites to be executed. Moreover, hierarchical
test suites allow referring to advanced test run features as resource inheritance
and action overloading.

Using resource inheritance and action overloading features, borderlines between
test suites as well as between test suite and test case become blurred. Nodes in
the hierarchy may be interpreted as test suite, but also as test case.

1.1.2 Running a test

In order to run a test in a test framework, several typical steps are required:

 Preparing test environment - This includes providing global settings for the
test run and preparing the test work area by collecting necessary test
resources.

 Running the test - This may be simply a function call but also a more
complex process.

 Evaluating test output: This typically includes comparing test output with
expected output and creating test results for the test.

In the example testRun performs the necessary steps for a single test by calling:

 settings - provide common environment variables for running tests
(settings.cmd)

 prepare - prepare test work area for execution (prepare.cmd)
 preprocessing - execute test specific preprocessing actions

(preprocessing.cmd)
 run - run the test (run.cmd)
 postprocessing - execute test specific post processing, e.g. comparing

output (postprocessing.cmd)
 report - create test run report information (report.cmd)

This demonstrates, how one may manage automated tests with just a few lines in
a command shell.

- 10 -

Since the work area will be removed after testing or replaced by data for the next
test run, detailed information about last test run will get lost. In order to keep test
run output, the work area data may be copied to a test run/test area (e.g. by
zipping the complete work area directory). In any case, test output and results
should be stored separately, i.e. in a separate test run directory or in appropriate
test run directories below each test suite. It might also be sufficient to copying
output data differing from expected results to a test run/test directory.

1.1.3 Managing tests within a test run

Managing tests within a test run includes the following basic features:

 Selecting tests to be executed
 Running selected tests
 Providing test run summary reports

For a given test suite hierarchy two simple ways of selecting tests can be used. By
selecting a single test suite for test run, tests for the test suite and all subsequent
test suites are executed. The other way is manually selecting or deselecting tests
in the test suite hierarchy. In the example, tests are indicated by a file with the
name test. Removing or renaming this file will exclude a test suite from being
tested. Nevertheless, there are many other ways of filtering tests for run as filtering
by name.

Beside managing test runs, the test framework has to manage test run resources.
This includes providing test run locations for storing results from tests within the
test run. Running tests within a test run should also provide a summary of test
results (true/false). Formatting the output property (e.g. as csv-file), usually allows
importing test results into a connected test management system (ODABA Teat
Browser or Project Manager, Polarion or other).

While running tests, also test events (e.g. start/stop time) may be written to a test
run protocol. As other test run resources, this should be stored in general in
separate test run location for the test suite. In order to be able to store test run
summaries, each test run should provide its own test run location (e.g. directory),
which contains test results and test output for executed tests.

 -

1.1.4 Advanced concepts

There are several ways for improving maintenance of test suites. Because of the
large amount of test data required for testing a component, techniques are
required, that allow reducing the amount of data, especially avoiding unnecessary
duplicates.

Following advanced features are considered in the next topics:

 Test suite patterns
 Test suite templates
 Test suite inheritance
 Test suite versioning
 Interface to test management

Here, advanced concepts are not discussed in detail, but some useful solutions
are shortly illustrated.

1.1.4.1 Test suite patterns

Test suite patterns provide typical test suite definitions. Test suite patterns are not
executed directly, but copied to become a specific test suite after updating special
parameters. The advantage for test suite pattern is, that those provide common
rules for test suites in a specific environment.

A test suite pattern defines the typical resources for a test suite. Providing a
number of test suite patterns supports standardizing test processes. An alternative
to test suite patterns ate test suite templates, which support automatic test suite
generation.

A test suite pattern may be copied and adapted to become a part of a test suite. In
case of test suite hierarchies, one may also provide a complete pattern hierarchy
in order to define kind of nested patterns.

Considering the value domain problem (including tests for lower than or equal to
minimum, between minimum and maximum and equal to or greater than
maximum), one may define a two level test suite:

 pattern_suite - providing common resources
 test suite 1 (value < minimum)
 test suite 2 (value = minimum)
 test suite 3 (minimum < value < maximum)
 test suite 4 (value = maximum)
 test suite 5 (value > maximum)

- 12 -

Such a pattern makes sense, when all 5 test cases require different input data.
One might, however, also define a test suite with five tests below, when the test
sets for the test do not differ (e.g. testing parameters passed to a program)

 pattern_suite - providing test suite resources
 test 1 (value < minimum)
 test 2 (value = minimum)
 test 3 (minimum < value < maximum)
 test 4 (value = maximum)
 test 5 (value > maximum)

1.1.4.2 Test suite templates

Test suite templates are another feature for providing generic test suites. A typical
case for defining test suite templates are value domain tests. When testing value
ranges for maximum and minimum value, five test cases result from the
requirement (lower than and equal to minimum, between minimum and maximum,
equal to and greater than maximum). Normally, one will not define all those test
cases, but just say "test p1 to be equal to or greater than 0 and equal to or lower
than 10". Passing p1, 0 and 20 to a value domain test suite template allows
generating the five required tests or test suites (e.g. as subordinated test suites)
and running those afterward.

One solution for this approach is illustrated within the example framework by
providing a specific preprocessing action, which generates and fills the 5
required subordinated test suites, which will be called automatically after finishing
generation.

It depends on specific test strategies, whether test templates are executed once or
for each test run. When generating the test suite once, test run conditions will not
change when rerunning the test. On the other hand, template improvements will
apply on a test run, only, when generating test suites all the time a test run is
executed.

1.1.4.3 Test suite inheritance

Arranging test suites in a hierarchical order allows inheriting test suite resources
along the hierarchy. In this case, the work area will be prepared by copying
resources from different level in a parent test suite hierarchy. During this process,
lower level resources always overwrite higher level resources.

The advantage using test suite inheritance is, that common resources for several
test suites may be defined once on a higher level in the test suite hierarchy.
Hierarchical test suites not only allow replacing data, but also test expectations
and actions. Thus, default actions defined for the main suite may be overloaded by
actions defined in subordinated test suites. Actions provided on lower levels will
always overwrite actions with the same name defined on higher levels in the test
suite hierarchy.

 -

Test suite inheritance is a feature, which allows reducing test resources extremely
by sharing those between several test suites. Thus, the effort for test suite
maintenance can be reduced. On the other hand, test suite inheritance includes
additional risks, since it is not obvious, which resources are finally used within a
test run. In order to be able to review test runs, one may store the test work area
before (and/or after) running the test.

The example below shows the work area resulting from test suite hierarchy. In
general, the main suite should contain as much resources as possible, but should
not contain any resource, which may be omitted in any of the subsequent test
runs. Nevertheless, in such cases the preprocessing action may solve the
problem by removing unnecessary files.

1.1.4.4 Test suite version control

When running several versions of a product, test suites versions have to be
controlled. Whatever framework is used for testing, it has to support version
control in any way. This becomes simple when using a command shell framework,
since one may check in the complete test root or main suite into any kind of
version control system system (GIT, SVN, ...). Advanced test frameworks provide
their own version control.

1.1.4.5 Interface to test management

While the test management manages test cases (and requirements) on a
conceptual level, the test framework allows running required tests. Nevertheless, it
is sometimes desirable to start test runs from test management and import test
results and progress information.

The way of solving this problem depends on the test management system. The
ODABA TestBrowser supports starting test runs by configuring the test frame work
and generating framework specific information for the test suites to be executed.
The connection between test cases and test suites may be provided by test suite
identifiers referenced in the test case or by any other algorithm deriving a test suite
identifier from the test case definition. Thus, test management and test execution
is loosely coupled and allows in a simple way connecting TestBrowser to different
kind of test frameworks.

- 14 -

1.2 Common example

The example provides a simple test suite as described below. After executing the
test suite hierarchy, success and failure messages are written to console and to
result file.

The following chapters describe the structure of the example, the principles for
running a test including a simple test case and the features provided by the
command shell test framework.

The test technology used for component and unit tests is based on a few simple
procedures and third party tools (Linux tools for MS Windows: find, diff, grep,
sed). In order to run tests the following steps are necessary:

1. Before running tests, data and expected results have to be provided in an
appropriate structure below a test root directory (see "Preparing data"
below). The location of the test root directory does not matter, since all
path definitions are relative.

2. When default actions or files do not match the requirements for some
tests, those have to be overloaded by appropriate actions and data sub
directory in the test suite directory.

3. Test suites or tests have to be executed in test runs and results have to be
checked by calling RunTestSuite. In case of test failures, single tests
may be corrected and repeated by calling RunTest.

When a test fails, there are always two possibilities: Either the tested component is
not correct or the expected result has been defined improperly. Both must taken
into account.

In order to manage test suites and test cases more comfortable, a GUI application
(TestBrowser) has been provided. TestBrowser created a database from the file
system (directory structure). All relevant information is stored in the file system.
When starting the TestBrowser the first time, the database will be created from the
file system data. Running the TestBrowser, database and file system are
automatically synchronized.

Example structure

Within the example, following directories are used:

 data - contains test set and results
 expectations - contains expected results
 actions - contains test run actions

In order to support inheritance features in a simple way, the example refers to a
hierarchical test suite arrangement. The example provides a simple test suite
hierarchy below the main suite:

 -

main_suite suite

main_suite/1 suite

main_suite/1/1 suite, run

main_suite/1/1/0 suite, run

main_suite/1/1/1 suite

main_suite/1/2 suite, run

main_suite/1/3 suite

main_suite/1/3/1 suite (disabled)

main_suite/1/3/2 suite (disabled)

main_suite/2 suite, run

Test suites marked as run are tests and will be executed in a test run. Test suites
marked as suite allow providing resources for a test in the work area. In the
example, each directory may define a test suite and a test at the same time. The
example framework does not support more than one test for a test suite.

It is assumed, that test suites are provided according to a test case hierarchy
below a common test root directory (ROOT_DIR). The test root contains common
resources as test frame work procedures, tools and executables (binaries) and
the work area (work_area) The top level for a test suite hierarchy for testing a
component is a directory with the name main_suite below test root. This contains
common resources for all the subsequent test cases. Sub directories are
numbered (1, ... n).

In order to mark test suites as suite and/or test, two special files may be provided
in each test suite directory:

 suite - Each test suite in the hierarchy contains a file named suite. The
system is constructed in a way, that it will stop recursion when the first
folder is met, which does not contain a suite file. The file may be empty or
may contain a short description of the test suite concept (e.g. test intend).

 run - Test suites, which are also tests and have to be executed, contain a
file named run. The run file may contain a description or comments for the
test run to be executed.

The content of these files is of no relevance for the test framework.

Default resources may be defined in main_suite, which may be replaced or
extended by resources defined further down in the test suite hierarchy.
main_suite is usually marked as suite but not as run.

Besides some procedures managing complex test runs, the test root directory
contains following directories:

- 16 -

 main_suite - top entry for test suite hierarchy (ROOT_DIR/main_suite)
 test_runs - contains a sub directory for each test run
 binaries - binaries or executables to be tested (BIN_DIR)
 binaries/tools - third party tolls used for running tests (TOOLS_DIR)
 work_area - work area (WORK_AREA)

Component to be tested

Ea component to be tested, MyTest.cmd is called from the binaries directory. the
shell echo command had been selected. The procedure simply calls the echo
command for creating an output file containing the test suite pass for the test suite
currently tested.

test root/binaries/MyTest.cmd
 rem 1 - current test suite location in hierarchy
 echo %1>>myTestResult.txt

Notes: Running tests will not only test the component, but also the test data and
expectations. Usually, it will take a while, until test data and expectations work
properly.

Data used

The simple component to be tested does not require input data, but will produce
an output file, only. Hence, the data directories are empty.

Except test suite 1/2, all the other test suited marked as run contain a file
myTestResult.txt with the expected text data in sub directory expectations. The
corresponding file in test suite 1/2 has different content and will, hence, fail when
running tests.

After executing the test suite hierarchy, results.out and logfile.out contain more or
less the subsequent data. In order to get a more detailled protocol, one may call
TestOut.cmd.

test root/test_runs/run_X/results.out (after calling RunTestSuite)
 1\1\\; success
 1\1\0\; success
 1\2\\; failed
 2\\\; success

test root/test_runs/run_X/logfile.out
 1\1\\ started : 23.02.2014 18:45:53,83
 1\1\\ finished: 23.02.2014 18:45:53,83
 1\1\0\ started : 23.02.2014 18:45:54,06
 1\1\0\ finished: 23.02.2014 18:45:54,06
 1\2\\ started : 23.02.2014 18:45:54,42
 1\2\\ finished: 23.02.2014 18:45:54,42
 2\\\ started : 23.02.2014 18:45:54,87
 2\\\ finished: 23.02.2014 18:45:54,87

 -

1.2.1 Running a test

In order to run a test for one or more test cases, a test run environment (run root)
has to be provided, which contains test runs in the same hierarchy as in the
main_suite. For running tests, only the test case directory structure is required
(without data, actions and expected directory).

 run root (RUN_PATH)
 main_suite

 actions (run, preprocessing, postprocessing, compare, ..)
 data

 binaries (executable files)
 MyTool
 tools (diff, find, grep, sed)

 work_area
 data (in/out)
 actions
 expected

The binaries directory contains tools and programs needed for running the test.
work_area provides all test specific resources, i.e. the work area may be used for
one test at the time. Before running a test, the work area has to be prepared for
the test. This is a task of the test framework.

For running a test, the main_suite/actions directory contains a run action. In case
of requested additional actions within a test, the run action has to be updated and
stored in the directory of the corresponding test case or test suite. Moreover, the
preprocessing action has to be provided in the main_suite/actions directory
and is overwritten in some test suites in order to perform actions in the
preprocessing step.

After running the test, test results are evaluated by comparing data collected in the
expected directory with the data created in data directory (postprocesssing
and compare action). In case of differences, result files differing are copied from
data to failed.

Since the work area will be recreated for each test, default procedures for actions
are stored in main_suite/actions. At least three default actions preprocessing,
run and postprocessing have to be provided. Since actions may be replaced
by other actions with the same name (overloading), these actions are called
dynamic actions.

Common settings for environment variables are defined in settings action,
which is part of the test framework.

Pre-processing

The preprocessing action allows providing specific actions to be called before
running the test. Typical actions are copying additional data or manipulating test

- 18 -

data for meeting test case requirements. The default action does nothing, but may
be overloaded in subordinated test cases (e.g. generating test suites from a test
suite template).

The preprocessing action is called and defined differently for Windows (cmd)
and Linux (bash).

Notes: Overloaded preprocessing action in order to set the class name for
running unit tests.

Executing test

Running the test suite depends on the test to be performed. Typically, the run
action is implemented on a higher level in the hierarchy (main suite). When,
however, considering another hierarchy, where each call gets its own test suite
below the main test suite, the run action could be implemented on the next lower
level.

As first and only parameter the current test or test suite is passed (path relative to
main_suite).

Summary information (start and stop time) is written to a log file (LOGFILE_OUT)
in the test run directory.

run calls the table compiler and writes start and stop information to logfile.out. An
example for overwriting the run action was the requirement calling the table
compiler twice. An example is given in the ODABA test suite under
Utilities/CopyDB/actions.

The run action is called and defined differently for Windows (cmd) and Linux
(bash).

Notes: The run action includes additional actions for creating statistics before and
after copying the database in order to compare copied database content.

Post-processing

The default postprocessing action compares all files defined in the expected
directory with the files created in the data directory by calling compare after
copying all error files (.err) to the test suite directory.

The Compare action compares the file passed with a file having the same file
name in the data directory in the work area. When comparing returns differences,
those are written to the COMPARE_OUT location, which has been defined in
settings (compare.out in test run directory). In case of errors (e.g. missing file in
data directory), error messages are written to the error location ERRORS_OUT
(errors.out in test run directory).

When comparing a file fails, the file is copied to the failed directory in the test suite
(copyFailed) and an error notice is written to compare.out.

 -

More enhanced compare could be easily achieved by calling grep (remove lines
not to be compared) and sed (change lines, i.g. for removing comments) before
comparing files.

Usually, the postprocessing action has to be provided for each test system
ones on top of the hierarchy. But it may also be overloaded for any test suite in the
test suite hierarchy.

The postprocessing action is called and defined differently for Windows (cmd)
and Linux (bash).

1.2.2 How to use the example frame work

The following chapters will explain, how to use the test framework. It looks a bit
complicate (and it is, indeed) because of a rather complex directory structure, but
tests need a lot of details and are complex by nature. The problem is to manage
complexity in a proper way. The test framework is a good mean for running tests
and managing test runs, but it becomes a nightmare when trying to prepare tests
just by creating and editing files and directories in the file system. For managing
test data, it is much more comfortable using tools like TestBrowser, which will be
explained later. This chapter provides a look behind the scene and will improve
understanding about what is going on when preparing and running tests with tools
like TestBrowser. On the other hand, the test framework may be used as
standalone tool, also.

- 20 -

When explaining how to prepare, execute and evaluate tests, the ODABA release
test delivered with ODABA TestBrowser is referenced as example. It consists of a
combination of unit and system tests to be performed when releasing a new
ODABA version. The example demonstrates principles when using the test
framework. The first test suite refers to unit tests for the ODABA API containing two
test suites for testing the Local and ClientServer version. The second test suite OSI
covers a series of tests for OShell commands (OShell) and special OSI operations
(Operation). The last test suite contains test cases for ODABA utility programs
(Utilities).

 main_suite
 API

 Local
 Application
 Binary
 Database
 ...

 ClientServer
 Application
 Binary
 Database
 ...

 OSI
 OShell
 Operation
 Extensions
 Templates
 ...

 Utilities
 BackupDB
 CheckDB
 ...

Green names in the hierarchy denote test cases, which are associated with tests
in one or more test runs. Blue names denote test suites. The main_suite is stored
in the directory ODABATest/TestRun, which is the root directory for the test
framework. This directory also contains the command line procedures of the test
frame work.

 -

1.2.2.1 Preparing tests

The testable unit for the test framework is a test case. Each test case is
represented by a directory with an appropriate test case name. Test cases may be
grouped in test suites by locating test case directories as sub directories below a
test suite directory. Test suites may be grouped, again, in upper test suites etc.

Each test suite directory must contain a suite file, which contains a short
description of the for the test suite. Test case directories need a suite file, which
allows storing explanations for the test and a run file, which may also contain
special hints for executing the test case. Content of suite and run files is needed
for documentation purpose, only, i.e. files may also be empty.

In order to run a test case, one has to prepare at least the run file in the actions
sub directory for calling actions to be executed. This and other actions that may be
overloaded (e.g. preprocessing) are stored in the actions sub directory. When not
defining preprocessing.cmd and postprocessing, those are taken from the next
higher test suite directory that provided appropriate command files in its actions
sub directory. The test framework always collections actions along the test suite
hierarchy, where command line files provided on lower level will overwrite
command line files with the same name provided on higher levels.

Test specific data has to be provided in the data sub directory for each test case.
Similar to command line files in actions directories, data common for several test
cases may be stored in the data sub directory of test suites on different hierarchy
levels. When running test cases, test data will be collected along the test suite
parent hierarchy.

Expected test results are provided in the expected sub directory. The expected sub
directory must contain at least one file with expected data. Also, expected data
may be provided in test suite expected sub directories.

1.2.2.2 Making use of data inheritance

Test data maintenance becomes a problem, when a new software version requires
new test data, actions or expected data has to be changed. When each test case
provides its own data, this may result in a lot of test data updates. Sometimes, this
can be done automatically, but often this has to be done manually. In order to
reduce the amount of test data (actions, data, expected), test data may be
inherited from test suite. All test data provided in actions, data and expected
directory of the upper test suite is available for all test cases belonging to the test
suite. In case that files that are provided for test suite and for a test case, test data
from the test case is used, i.e. test case test data overwrites test data provided in
the test suite.

The same way as test cases may share test data provided in the upper test suite,
test suites may also share test data stored in the next higher test suite. Thus, test
data may be reduced by storing it in the right place. Typically, actions are shared

- 22 -

between test suites and test cases. Sometimes, also data is shared. Sharing
expected data is, however, a rare case.

Before executing a test, actions, data and expected files are collected for each test
case along the parent test suite hierarchy are collected and copied to actions, data
and expected sub directory of the work_area. The disadvantage is, that test data
stored in the file system is not transparent anymore, since one has to check the
complete hierarchy in order to find out, what kind of test data is really involved in
test. A work around is provided with the action SetupWorkArea, which creates
the work area for the required test case. TestBrowser a.so shows "merged
collections", which contain the test data as being merged from test case and
parent directories.

1.2.2.3 Executing tests

For executing test cases, required resources (actions, data, expected) are copied
from test cases and test suite directories to a work area, when calling appropriate
test run commands:

For running a single test case, RunTest has to be called:

RunTest "API/Local/Application" "%cd%/test_runs/TestRun001" "%cd
%/main_suite" "%cd%" ""

Instead of TestRun001 any other test run name may be used. The test run
directory will be created when not yet existing.

In order to execute the complete hierarchy, RunMany has to be called:

RunMany "%cd%/test_runs/TestRun001" "%cd%/main_suite"

from the test root directory (ODABATest/TestRun). For executing a specific test
suite (e.g. Utilities)

RunMany "%cd%/test_runs/TestRun001" "%cd%/main_suite/Utilities"

may be called, which will execute all test cases below Utilities. All the commands
will finally call testRun, which executes following actions:

 settings - set environment variables
 prepare - copy test data (recursively) to work_area directory
 preprocessing - perform test specific test preparation (has to be

provided in test case or test suite actions)
 run - execute test (has to be provided in test case or test suite actions)
 postprocessing - typically, the procedure removes variable data, e.g.

timestamps, from test data before being compared (has to be provided in
test case or test suite actions). Finally, the procedure has to create a
compare.out file (e.g. by comparing expected and test result files).

 report - writes success or failed state in a test protocol file

 -

1.2.2.4 Test evaluation

Evaluating test results is typically done by comparing expected data with data
created by running a test. The test framework only expects that test results for a
test are summarized in a file compare.out (COMPARE_OUT environment variable).
When no differences have been found between test results and expected data, the
file is empty (success). When one or more files differ between expected data and
test results, the differences should be listed in the compare.out file (failed). When
test had not been executed for any other reason, the compare.out file does not
exist.

Creating the compare.out file, is task of the postprocessing action. This is not
part of the test framework, but has to be provided for a specific test environment.
The ODABATest environment provides the procedures listed below:

 postprocessing - Preparing files for compare (GetErrorsFromLog
and Compare)

 GetErrorsFromLog - Remove timestamps and directory paths from test
error.lst and output.lst files, which are created by all test test runs.

 Compare - Compares updated files with expected results. In case of
differences, those are written to COMPARE_OUT (compare.out) file and the
test result file differing is written to the test/failed directory (CopyFailed
action)

 CopyFailed - Save test result file differing from expected data in failed
directory.

- 24 -

From the compare.out file, the results.out file for the complete test run is appended
with the test result for the test (success or failed). In addition, the run procedure for
ODABATest environment creates a log file logfile.out containing start and stop
time for each test.

postprocessing (Linux):
before comparing remove time stamps, file locations and other variable
data
compare all expected files with data created by test

 ${TEST_ACT}/GetErrorsFromLog
 cp -f ${WORK_AREA}/data/*.err ${TEST_RUN} 2>/dev/null
 for x in ${WORK_AREA}/expected/*; do ${TEST_ACT}/Compare $x; done

GetErrorsFromLog (Linux):
Remove time stamps and file locations

 if [-f ${WORK_AREA}/data/output.lst] ; then
 cat ${WORK_AREA}/data/output.lst | ${ODABA_TOOLS}/ReplaceTextL $
{WORK_AREA} ... | ${ODABA_TOOLS}/ReplaceTextL ${ODABA_ROOT} ... >$
{WORK_AREA}/data/output.out ;
 fi
 if [-f ${WORK_AREA}/data/error.lst] ; then
 cat ${WORK_AREA}/data/error.lst | sed "s/[0-9][0-9][0-9][0-9]\/[0-9]
[0-9]\/[0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]/ /"
>${WORK_AREA}/data/Utility.err
 fi

Compare (Linux):
Compare two files and save result in case of differences
1 - file name (complete path) to be compared

 echo "Compare $1"
 diff -b "${WORK_AREA}/data/$(basename $1)" "$1" >>${COMPARE_OUT} 2> $
{ERRORS_OUT} || ${TEST_ACT}/CopyFailed $1

CopyFailed (Linux):
copy files causing problems
1 - file name (complete path) to be copied

 if [! -d ${TEST_RUN}/failed] ; then
 mkdir ${TEST_RUN}/failed
 fi
 cp "${WORK_AREA}/data/$(basename $1)" "${TEST_RUN}/failed/$(basename
$1)"
 echo "File ${TEST_RUN}/data/$(basename $1) missing or differs from
expected result" >>${COMPARE_OUT}

 -

2 Test framework actions (Linux)

The bash test framework consists of a number of procedures for managing tests
under Linux.

In order to run a test, all required resources are copied to the work area
(work_area) which is structured according to the requirements of the component to
be tested. When running a series of tests in the test framework, the work area will
be overwritten each time, a new test is started. In order to guarantee traceability,
the work area has to be copied to the test suite running the test (e.g. as zip file).
Here, only differing files are stored to the failed directory in the test suite.

The test framework provides a set of common actions for managing test
preparation and evaluation. In addition, each specific test environment has to
provide adopted actions named preprocessing, run and postprocessing
(bash file names without extension), which are usually stored in main_suite/actions
directory, and possibly overloaded in several test cases or test suites. Test
framework actions (procedures) are stored in the test root directory.

Several actions that are called internally by the framework are defined as functions
in TestSuite.sh. Framework actions that may be called from command line are
RunTest.sh, RunMany.sh, SetupWorkArea.sh and TestOut.sh. In order to support
parallel testing, the work area location may also be passed as parameter to
RunTest or RunMany action.

Starting test run(s)

In order to execute a single or a number test cases, framework actions RunTest
or RunMany may be called.

For executing a single test case, RunTest is called. In order to locate the proper
test case, the relative path has to be defined like API/Local/Property.

In order to run the complete test suite hierarchy, RunMany may to be called. The
procedure executes all test case directories containing a run file. In order to filter
test cases for execution, one may rename the run file in test case directories to be
excluded.

- 26 -

For each test directory, runSingle will be called. runSingle executes a single
test suite after checking the presence of a run file in the directory. When the run
file exists, testRun is called.

RunTest.sh
#!/bin/bash
source ./TestSuite.sh
execute single test
 # 1 - relative test suite path (e.g. 0/1/2)
 test_suite=$1 # CHAR
 # 2 - test run directory (${RUN_PATH%})
 run_root=$2 # CHAR
 # 3 - main suite directory (${ROOT_PATH})
 main_suite=$3 # CHAR
 # 4 - test root directory ($PWD)
 root_dir=$4 # CHAR
 # 5 - work area location (${WORK_DIR})
 WORK_dir=$4 # CHAR

 settings ${test_suite} ${run_root} ${main_suite} ${root_dir} $
{work_dir} ;
 pushd ${RUN_ROOT} > /dev/null
 runSingle ./${test_suite}
 popd > /dev/null

RunMany.sh
#!/bin/bash
source ./TestSuite.sh
execute single test
 # 1 - relative test suite path (e.g. 0/1/2)
 test_suite=$1 # CHAR
 # 2 - test run directory (${RUN_PATH%})
 run_root=$2 # CHAR
 # 3 - main suite directory (${ROOT_PATH})
 main_suite=$3 # CHAR
 # 4 - test root directory ($PWD)
 root_dir=$4 # CHAR
 # 5 - work area location (${WORK_DIR})
 work_dir=$4 # CHAR

 settings ${test_suite} ${run_root} ${main_suite} ${root_dir} $
{work_dir} ;
 pushd %RUN_ROOT%
 find ./ -type d -exec ${ROOT_DIR}\runSingle.sh {} $1 ;
 popd

run single test in hierarchy (TestSuite.sh)
runSingle() {
1 - test directory below main suite .../main_suite
 test_suite=$1 # CHAR

 #CODE
 if [-f ${MAIN_SUITE}/$1/run]; then
 testRun ${test_suite};
 fi
}

 -

Running a test within the frame work

In order to run a test, the testRun action is provided by the test framework
(TestSuite.sh). The testRun action updates settings for environment variables,
prepares the work area and calls test environment specific actions for the selected
work suite. settings and prepare are framework actions, which cannot be
overloaded, while preprocessing, run and postprocessing are test
environment specific actions, which have to be defined for each specific test
environment in top or lower test suite or test case actions directory.

After setting test environment variables (settings action), the prepare action
copies test data (actions, data, expected) to corresponding directories in work_area
from the test suite hierarchy. Test data from test cases and test suites is copied
recursively (copyRecursive) from the test suite hierarchy by copying resources
from the test case to be tested and all its parent test suites. A directory is
considered as test suite, when it contains a file suite. Copying stops, when the
first directory was found, which is not a test suite. Files existing on lower levels in
the hierarchy, always will overwrite files with the same name provided on higher
levels.

When NO_RUN has been set to YES (SetupWorkArea), the testRun action
terminates without executing the test run. Otherwise actions preprocessing,
run and postprocessing are called.

Finally the test result is checked by comparing data and writing differences to
COMPARE_OUT (compare.out) file in test run directory. When COMPARE_OUT is
empty, the test status is success, and failed otherwise. The result is written to
console and to results.out in the test run directory by the report action.

selected actions called by testRun in TestSuite.sh
execute singele test
testRun() {
1 - test directory below main suite .../main_suite
 test_suite=$1 # CHAR

 #CODE
 pushd . > /dev/null
 # prepare test work suite ... (global actions)
 settings ${test_suite} ${RUN_ROOT} ${MAIN_SUITE} ${ROOT_DIR}
 prepare
 source ${TEST_ACT}/preprocessing
 if [! "${NO_RUN}" == "YES"]; then
 # run test ... (actions may be overloaded)
 preprocessing ${test_suite}
 ${TEST_ACT}/run ${test_suite}
 ${TEST_ACT}/postprocessing ${test_suite}
 # create test report
 report ${test_suite}
 fi
 popd > /dev/null
}

- 28 -

Set global test frame work variables
settings() {
 # 1 - relative test suite path (e.g. 0/1/2)
 test_suite=$1 # CHAR
 # 2 - test run directory (${RUN_PATH%})
 run_root=$2 # CHAR
 # 3 - main suite directory (${ROOT_PATH})
 main_suite=$3 # CHAR
 # 4 - test root directory ($PWD)
 root_dir=$4 # CHAR
 # 5 - temporary work directory (${WORK_DIR})
 work_dir=$5 # CHAR

 #CODE
 if ["${root_dir}" == ""]; then
 export ROOT_DIR=$PWD;
 else
 export ROOT_DIR=${root_dir};
 fi

 if ["${main_suite}" == ""]; then
 export MAIN_SUITE=${ROOT_PATH};
 else
 export MAIN_SUITE=${main_suite};
 fi

 if ["${run_root}" == ""]; then
 export RUN_ROOT=${RUN_PATH};
 else
 export RUN_ROOT=${run_root};
 fi
 if [! -d ${RUN_ROOT}]; then
 mkdir -p ${RUN_ROOT};
 fi

 if ["${test_suite}" == ""]; then
 export TEST_SUITE=${MAIN_SUITE};
 else
 export TEST_SUITE=${MAIN_SUITE}/${test_suite};
 fi

 if ["${work_dir}" == ""]; then
 if ["${WORK_DIR}" == ""]; then
 WORK_AREA=${ROOT_DIR}/work_area;
 else
 WORK_AREA=${WORK_DIR};
 fi
 else
 WORK_AREA=${work_dir};
 fi
 if [! -d ${WORK_AREA}/actions]; then
 mkdir -p ${RUN_ROOT}/actions;
 fi
 if [! -d ${WORK_AREA}/data]; then
 mkdir -p ${RUN_ROOT}/data;
 fi
 if [! -d ${WORK_AREA}/expected]; then
 mkdir -p ${RUN_ROOT}/expected;

 -

 fi

 export WORK_AREA
 export TEST_ACT=${WORK_AREA}/actions
 export BIN_DIR=${ROOT_DIR}/binaries
 export TOOLS_DIR=${BIN_DIR}/tools
 export TEST_RUN=${RUN_ROOT}/${test_suite}

 export LOGFILE_OUT=${RUN_ROOT}/logfile.out
 export RESULTS_OUT=${RUN_ROOT}/results.out
 export REPORT_OUT=${RUN_ROOT}/report.out
 export ERRORS_OUT=${TEST_RUN}/errors.out
 export COMPARE_OUT=${TEST_RUN}/compare.out

 export LD_LIBRARY_PATH=/usr/local/lib
 export ODABA_TOOLS=/usr/local/lib/odaba/tools

 export TEST_NAME=$(basename ${TEST_SUITE})
}

Initialize test folder
prepare() {
 #CODE

 # delete last test suite results
 rm -f ${COMPARE_OUT}
 rm -f ${ERRORS_OUT}

 # delete work suite data
 rm -rf ${WORK_AREA}/data/*
 rm -rf ${WORK_AREA}/expected/*
 rm -rf ${WORK_AREA}/actions/*
 rm -rf ${TEST_RUN}/failed/*

 pushd ${TEST_SUITE} > /dev/null
 copyRecursive
 popd > /dev/null
}

Hierarchical copies contents of data, expected and actions into the $
{work_area}
copyRecursive() {
 #CODE
 if [-f suite]; then
 pushd .. > /dev/null
 copyRecursive
 popd > /dev/null
 cp -r data/* ${WORK_AREA}/data 2>/dev/null
 cp -r expected/* ${WORK_AREA}/expected 2>/dev/null
 cp -r actions/* ${WORK_AREA}/actions 2>/dev/null
 fi
}

evaluate termination code
report() {
1 - test directory below main suite .../main_suite
 test_suite=$1 # CHAR
 test_result=success

- 30 -

 #CODE
 if [-f ${COMPARE_OUT}]; then
 diff "${ROOT_DIR}/main_suite/compare.top" "${COMPARE_OUT}" >
/dev/null || test_result=failed
 else
 test_result=failed
 echo "... nothing to compare (expected empty)" >${COMPARE_OUT}
 fi
 echo "${test_suite}; ${test_result}" >>${RESULTS_OUT}
 echo "${test_suite} terminated: ${test_result}"
 if [! -f ${TEST_RUN}/run]; then
 cp ${TEST_SUITE}/run ${TEST_RUN}/run
 fi
}

 -

Output test protokol

Remarks about the test runs may have been stored in each test run directory in
the run file. In order to print out a comprehensive test protocol, one may call
TestOut framework action (TestOut.sh). The action calls outRun for each sub
directory containing a run file.

More reporting features are provided with ODABA Test Browser application.

TestOut.sh
#!/bin/bash
source ./TestSuite.sh
execute single test
 # 1 - relative test suite path (e.g. 0/1/2)
 test_suite=$1 # CHAR
 # 2 - test run directory (${RUN_PATH%})
 run_root=$2 # CHAR
 # 3 - main suite directory (${ROOT_PATH})
 main_suite=$3 # CHAR
 # 4 - test root directory ($PWD)
 root_dir=$4 # CHAR

 settings ${test_suite} ${run_root} ${main_suite} ${root_dir} ;

 rm -f ${REPORT_OUT}

 pushd ${RUN_ROOT}
 find ./ -type d -exec ${ROOT_DIR}/outRun.sh {} ${test_suite} ;
 type ${RESULTS_OUT}
 popd

create test run summary and print to REPORT_OUT (TestSuite.sh)
outRun() {
1 - test directory below main suite .../main_suite
 test_suite=$1 # CHAR

 #CODE
 settings %1 %ROOT_DIR%
 if [-f ${TEST_SUITE}/run]; then
 pushd ${TEST_RUN} > /dev/null
 echo Tested ${test_suite}>>${REPORT_OUT}
 if [-f run]; then
 type run >>${REPORT_OUT}
 fi
 echo .>>${REPORT_OUT}
 echo --->>${REPORT_OUT}
 popd > /dev/null
 fi
}

- 32 -

3 Test framework actions (Windows)

The cmd test framework consists of a number of procedures managing tests under
Windows.

In order to run a test, all required resources are copied to the work area
(work_area) which is structured according to the requirements of the component to
be tested. When running a series of tests in the test framework, the work area will
be overwritten each time, a new test is started. In order to guarantee traceability,
the work area has to be copied to the test suite running the test (e.g. as zip file).
Here, only differing files are stored to the failed directory in the test suite.

The test framework provides a set of common actions (command line procedures)
for managing test preparation and evaluation. In addition, each specific test
environment has to provide adopted actions named preprocessing, run and
postprocessing (command line procedures with extension .cmd), which are
usually stored in main_suite/actions directory, and possibly overloaded in several
test cases or test suites. Test framework actions (procedures) are stored in the test
root directory.

Framework actions that may be called from command line are RunTest.cmd,
RunMany.cmd, SetupWorkArea.cmd and TestOut.cmd. In order to support parallel
testing, the work area location may also be passed as parameter to RunTest or
RunMany action. Default is the work_area directory below the test root directory.

Starting test run(s)

In order to execute a single or a number test cases, framework actions RunTest
or RunMany may be called.

For executing a single test case, RunTest is called. In order to locate the proper
test case, the relative path has to be defined like API/Local/Property.

In order to run the complete test suite hierarchy, RunMany may to be called. The
procedure executes all test case directories containing a run file. In order to filter
test cases for execution, one may rename the run file in test case directories to be
excluded.

 -

For each test directory, runSingle will be called. runSingle executes a single
test suite after checking the presence of a run file in the directory. When the run
file exists, testRun is called. testRun is called via callNormalized, which
normalizes the directory path by removing ./ at the beginning of the path name
(this type of path names are not supported by older command line functions as
type or copy).

// RunTest.cmd
 @echo off
 rem execute single test
 rem 1 - relative test suite path (e.g. 0/1/2)
 rem 2 - test run directory (%RUN_PATH%)
 rem 3 - main suite directory (%ROOT_PATH%)
 rem 4 - test root directory (%cd%)
 rem 5 - work directory (%WORK_DIR%)

 call %4\settings.cmd %1 %2 %3 %4 %5

 pushd %RUN_ROOT%
 call %ROOT_DIR%\runSingle.cmd ./%~1
 popd

// RunMany.cmd
 @echo off
 rem execute test run(s)
 rem 1 - test run directory (%RUN_PATH%)
 rem 2 - main suite directory (%ROOT_PATH%)
 rem 3 - test root directory (%cd%)

 if "%3" == "" (call %cd%\settings.cmd . %1 %2) else (call
%3\settings.cmd . %1 %2 %3)

 pushd %2
 %TOOLS_DIR%\find . -type d -exec %ROOT_DIR%\runSingle.cmd {} ;
 popd

// runSingle.cmd
 @echo off
 rem run single test in hierarchy
 rem 1 - test folder name below main suite ...\main_suite

 if exist %MAIN_SUITE%\%1\run %ROOT_DIR%\callNormalized.cmd %ROOT_DIR
%\testRun.cmd %1

// CallNormalized.cmd
@echo off
rem convert Linux path to MS Windows path (./a/b... --> a\b...)
rem 1 - procedure to be called
rem 2 - "find" name for directory or file
FOR /F "tokens=2,3,4,5 delims=/" %%G IN ('echo %2') DO call %1 %%G\%%H\%
%I\%%J %2

- 34 -

Running a test within the frame work

In order to run a test, the testRun action is provided by the test frame work
(testRun.cmd). The testRun action updates settings for environment variables,
prepares the work area and calls test environment specific actions for the selected
work suite. settings and prepare are framework actions, which cannot be
overloaded, while preprocessing, run and postprocessing are test
environment specific actions, which have to be defined for each specific test
environment in top or lower test suite or test case actions directory.

After setting test environment variables (settings action), the prepare action
copies test data (actions, data, expected) to corresponding directories in work_area
from the test suite hierarchy. Test data from test cases and test suites is copied
recursively (copyRecursive) from the test suite hierarchy by copying resources
from the test case to be tested and all its parent test suites. A directory is
considered as test suite, when it contains a file suite. Copying stops, when the
first directory was found, which is not a test suite. Files existing on lower levels in
the hierarchy, always will overwrite files with the same name provided on higher
levels.

When NO_RUN has been set to YES (SetupWorkArea), the testRun action
terminates without executing the test run. Otherwise actions preprocessing,
run and postprocessing are called.

Finally the test result is checked by comparing data and writing differences to
COMPARE_OUT (compare.out) file in test run directory. When COMPARE_OUT is
empty, the test status is success, and failed otherwise. The result is written to
console and to results.out in the test run directory by the report action.

// testRun.cmd
 @echo off
 rem execute test suite
 rem 1 - work suite directory name below main_suite
 pushd .
 rem prepare test work suite ... (global actions)
 call %ROOT_DIR%\settings.cmd %1 %RUN_ROOT% %MAIN_SUITE% %ROOT_DIR%
 call %ROOT_DIR%\prepare.cmd
 if "%NO_RUN%" == "YES" goto end
 rem run test ... (actions may be overloaded)
 call %TEST_ACT%\preprocessing.cmd %1
 call %TEST_ACT%\run.cmd %1
 call %TEST_ACT%\postprocessing.cmd %1
 rem create test report
 call %ROOT_DIR%\report.cmd %1
 :end
 popd

// settings.cmd
 rem Set test environment variables
 rem 1 - relative test suite path (e.g. 0/1/2)
 rem 2 - test run directory (%RUN_PATH%)
 rem 3 - main suite directory (%ROOT_PATH%)

 -

 rem 4 - test root directory (%cd%)
 rem 5 - work directory (%WORK_DIR%)

 rem global test environment
 if "%4" == "" (set ROOT_DIR=%cd%) else (set ROOT_DIR=%~4)
 if "%3" == "" (set MAIN_SUITE=%ROOT_PATH%) else (set MAIN_SUITE=%~3)
 if "%2" == "" (set RUN_ROOT=%RUN_PATH%) else (set RUN_ROOT=%~2)
 if "%1" == "" (set TEST_SUITE=%MAIN_SUITE%) else (set TEST_SUITE=
%MAIN_SUITE%\%~1)
 set TOOLS_DIR=%ROOT_DIR%\binaries\tools
 set BIN_DIR=%ROOT_DIR%\binaries

 rem test work area settings
 if "%~5" == "" (set WORK_AREA=%WORK_DIR%) else (set WORK_AREA=%~5)
 if "%WORK_AREA%" == "" set WORK_AREA=%ROOT_DIR%
 set WORK_AREA=%WORK_AREA%\work_area
 set TEST_ACT=%WORK_AREA%\actions

 rem prepare test run directory
 if not exist %RUN_ROOT% mkdir %RUN_ROOT%
 set TEST_RUN=%RUN_ROOT%\%~1
 set LOGFILE_OUT=%RUN_ROOT%\logfile.out
 set RESULTS_OUT=%RUN_ROOT%\results.out
 set REPORT_OUT=%RUN_ROOT%\report.out
 if not exist %TEST_RUN% mkdir %TEST_RUN%

 rem error protocols
 set ERRORS_OUT=%TEST_RUN%\errors.out
 set COMPARE_OUT=%TEST_RUN%\compare.out
 :end

// prepare.cmd
 rem Initialize test folder
 rem delete last test suite results
 cd /D %TEST_SUITE%
 if exist %COMPARE_OUT% del %COMPARE_OUT%
 if exist %ERRORS_OUT% del %ERRORS_OUT%

 rem delete work suite data
 del /Q /S %WORK_AREA%\data*.* > nul
 del /Q /S %WORK_AREA%\expected*.* > nul
 del /Q /S %WORK_AREA%\actions*.* > nul
 del /Q /S %TEST_RUN%\failed*.* > nul

 rem copy resources
 call %ROOT_DIR%\copyRecursive.cmd

// copyRecursive.cmd
 rem Copy test data recursively from test case hierarchy
 if exist suite (
 pushd ..\.
 call %ROOT_DIR%\copyRecursive.cmd
 popd
 if exist data xcopy /Y data*.* %WORK_AREA%\data*.* > nul
 if exist expected xcopy /Y expected*.* %WORK_AREA%\expected*.* >
nul
 if exist actions xcopy /Y actions*.* %WORK_AREA%\actions*.* > nul
)

- 36 -

// report.cmd
 rem evaluate termination code
 rem 1 - work suite directory name below test root\0

 set RESULT=success
 if exist "%COMPARE_OUT%" (
 %TOOLS_DIR%\diff "%ROOT_DIR%\main_suite\compare.top" "%COMPARE_OUT%"
>> nul || set RESULT=failed
) else (
 set RESULT=failed
 echo ... nothing to compare (expected empty) >%COMPARE_OUT%
)
 echo %1; %RESULT% >>%RESULTS_OUT%
 echo %1 terminated: %RESULT%
 if not exist %TEST_RUN%\run copy %TEST_SUITE%\run %TEST_RUN%\run >>nul

 -

Output test protokol

Remarks about the test runs may have been stored in each test run directory in
the run file. In order to print out a comprehensive test protocol, one may call
TestOut framework action (TestOut.cmd). Via calling action callNormalized in
order to change Linux paths to Windows path the outRun is called for each sub
directory containing a run file.

More reporting features are provided with ODABA Test Browser application.

// TestOut.cmd
 @echo off
 rem list test results
 rem 1 - relative test suite path (e.g. 0/1/2)
 rem 2 - test run directory (%RUN_PATH%)
 rem 3 - main suite directory (%ROOT_PATH%)
 rem 4 - test root directory (%cd%)

 call settings.cmd %1 %2 %3 %4
 if exist %REPORT_OUT% del %REPORT_OUT%

 pushd %RUN_ROOT%
 %TOOLS_DIR%\find . -type d -exec %ROOT_DIR%\outSingle.cmd {} %1 ;
 type %RESULTS_OUT%
 popd

// outSingle.cmd
 @echo off
 rem run single test in hierarchy
 rem 1 - test folder name below top suite ...\main_suite
 call %ROOT_DIR%\callNormalized.cmd %ROOT_DIR%\outRun.cmd %1

// outRun.cmd
 @echo off
 rem 1 - test folder name below main suite ...\main_suite
 call %ROOT_DIR%\settings.cmd %1 %ROOT_DIR%
 if exist %TEST_SUITE%\run (
 pushd %TEST_RUN%
 echo Tested %1>>%REPORT_OUT%
 if exist run type run >>%REPORT_OUT%
 echo .>>%REPORT_OUT%
 echo --->>%REPORT_OUT%
 popd
)

- 38 -

4 TestBrowser

In order to manage file system data in a comfortable way, an ODABA GUI
application TestBrowser has been provided, which allows creating, importing and
removing test cases, updating test files and expected data, running tests and
analyzing and displaying test results.

TestBrowser is an ODABA application based on file system data and the ODABA
test framework (based on file system and command line procedures). The
database content is completely created from file system information, which allows
recreating the database completely from file system at any time. One may also
provide a subset of a test environment and create a database for this subset. The
database is created automatically, when no data base is available when starting
TestBrowser.

In case of changes made in the (external) file system, the database is
synchronized in many cases automatically or may be synchronized explicitly by
user action. It is also possible to synchronize the complete database with the file
system while running TestBrowser.

Changes made from within TestBrowser (e.g. deleting files or directories, changing
file content) are automatically reflected in the file system.

 -

The chapter "Using TestBrowser" describes the most important actions for creating
and running tests by means of a simple example. More details about TestBrowser
functionality is provided in chapter "Action Reference". The chapter "Database
access" contains a detailed description of database model and implemented
functions, which may be used in extensions or when customizing TestBrowser.
Since the complete application is written with OSI script language, it becomes
quite simple to make any kind of changes.

- 40 -

4.1 Using TestBrowser

In order to run TestBrowser, one may either call TestBrowser command from
ODABATest test environment, which will start the ODABA release test
environment. One may also create a new test environment by copying the ODABA
test environment (.../TestRoot/Linux or ...\TestRoot\Windows) template to a location,
which becomes the test root.

4.1.1 Creating a new test environment

The chapter will demonstrate by means of a simple example, how to build a test
environment with the TestBrowser. Everything done with TestBrowser is stored in
the file system, i.e. TestBrowser is just a tool to simplify test data management. In
order to demonstrate the test environment, a CommandShell test suite will be
created for "testing" the echo and copy command (test cases).

In order to create a new test environment, the easiest way is to copy the test root
template delivered with TestBrowser installation. After copying the test root
template for Linux or Windows (.../TestRoot/Linux or ...\TestRoot\Windows) to test
root location (referenced in future as test_root directory), one may call the
TestBrowser action in the test_root directory. Than, an empty TestBrowser
application pops up showing a single actions directory:

 -

The new test environment does not contain any test suite or test case, but patterns
for required test environment actions preprocessing, run and
postprocessing.

In order to create a new test suite, one may use the action buttons above the
directory tree. After creating test suites and test cases, one may create a test run
by selecting any number of test cases or suites from the directory tree (action
buttons above the directory tree). In order to execute a test run, the Test runs tab
above the directory tree has to be selected. The following sections will explain
these steps more detailed.

Notes: The examples are written as Linux bash procedures, but work the same
way under Windows, except the procedures are cmd procedures and not bash
procedures.

4.1.1.1 Update environment specific actions

Environment specific actions are preprocessing, run and postprocessing.
Actions delivered with the test environment template are considered as example
have to be updated, usually. After selecting the Files tab below the edit window,
provided actions are shown:

- 42 -

At least the run action requires some modification. Actions can be updated in the
lower edit box of the window. When leaving the box, changes are saved to the file
automatically. Here, the run action will be overloaded later in test cases. The
example below shows a pattern for a typical run action as delivered with the test
environment template.

The postprocessing action delivered as pattern provides a compare
mechanism for comparing all files in the expected directory with test result files
having the same name, which will be sufficient for the example. Usually, evaluating
test results becomes a bit more difficult, since variable information as timestamps
or file locations have to be eliminated from test results and expected data.

For the simple demonstration, action patterns need not to be updated. The run
action will be overloaded later in test cases.

 -

Linux hints

In order to support settings for environment variables, preprocessing actions
have to be defined as function. The preprocessing file is included in the framework
action testRun. The action patterns provided with the test environment pattern
are listed below:

// preprocessing
#!/bin/bash
define preprocessing action when required
preprocessing() {
define environment variables required for tests, e.g.
 export LD_LIBRARY_PATH=/usr/local/lib
}
// run
 #!/bin/bash
 source ${ROOT_DIR}/TestSuite.sh
 # run test
 # 1 - current test suite location in hierarchy
 test_suite=$1 # CHAR
 echo ${test_suite} started : $(date +'%Y/%m/%d %T') >>${LOGFILE_OUT}
 cd ${WORK_AREA}/data
 ${BIN_DIR}\test.exe parm1 parm2
 echo ${test_suite} finished: $(date +'%Y/%m/%d %T') >>${LOGFILE_OUT}

// postprocessing
 #!/bin/bash
 # source ${ROOT_DIR}/TestSuite.sh
 # compare results ... a typical implementation

 ${TEST_ACT}/GetErrorsFromLog
 cp -f ${WORK_AREA}/data/*.err ${TEST_RUN} 2>/dev/null
 for x in ${WORK_AREA}/expected/*; do ${TEST_ACT}/Compare $x; done

// Compare
 #!/bin/bash
 # source ${ROOT_DIR}/TestSuite.sh
 # 1 - file name (complete path) to be compared
 echo "Compare $1"
 diff -b "${WORK_AREA}/data/$(basename $1)" "$1" >>${COMPARE_OUT} 2> $
{ERRORS_OUT} || ${TEST_ACT}/CopyFailed $1

// CopyFailed
 #!/bin/bash
 # copy files causing problems
 # 1 - file name (complete path) to be copied

 if [! -d ${TEST_RUN}/failed] ; then
 mkdir ${TEST_RUN}/failed
 fi
 cp "${WORK_AREA}/data/$(basename $1)" "${TEST_RUN}/failed/$(basename
$1)"
 echo "File ${TEST_RUN}/data/$(basename $1) missing or differs from
expected result" >>${COMPARE_OUT}

- 44 -

Windows hints

The preprocessing action actually does nothing but has to be provided in the
actions folder under main_suite. The binary/tools directory contains some Linux
tools (diff, find etc.) for running the delivered postprocessing action. The action
patterns provided with the test environment pattern are listed below:

// preprocessing.cmd
rem run pre-processing actions
rem in order to do something, the action has to be overwritten below

// run.cmd
rem Compile table
rem 1 - current test suite location in hierarchy

echo %1 started : %Date% %Time% >>%LOGFILE_OUT%
cd /D %WORK_AREA%\data
rem include test function call like %BIN_DIR%\test.exe parm1 parm2
echo %1 finished: %Date% %Time% >>%LOGFILE_OUT%

// postprocessing.cmd
rem compare results ... a typical implementation
copy /Y %WORK_AREA%\data*.err %TEST_RUN%\. >nul
for %%x in (%WORK_AREA%\expected*.*) do call %TEST_ACT%\Compare.cmd %
%x

// Compare.cmd
rem 1 - file name (complete path) to be compared
%TOOLS_DIR%\diff "%WORK_AREA%\data\%~nx1" "%1" >>%COMPARE_OUT% 2>>
%ERRORS_OUT% || call %TEST_ACT%\CopyFailed %1

// CopyFailed.cmd
rem 1 - file name (complete path) to be compared
%TOOLS_DIR%\diff "%WORK_AREA%\data\%~nx1" "%1" >>%COMPARE_OUT% 2>>
%ERRORS_OUT% || call %TEST_ACT%\CopyFailed %1

 -

4.1.1.2 Create new test suite

Creating a new test suite is done by clicking the action button above the test suite
tree and entering the name for the new test suite. The new test suite (or test case)
is inserted at the currently selected level in the tree.

After creating a new test suite, the Properties tab should be selected in the edit
window for entering a short description for the test suite and required test suite

attributes:

- 46 -

For test suites, the Test option must be off (is is on after creating the test suite).
The Suite option must be on (is set after create). Activating the suite option creates
a file suite in the test suite directory, which contains the description entered in the
Intention field. The Attributes field may contain any number of attributes beginning
with the name which is separated by = sign from the attribute value. Attributes are
stored in a file attributes in the test suite directory. From within test browser OSI
functions one may access attributes via functions DirEntry::GetAttribute()
and DirEntry::SetAttribute().

Below the test suite directory, a data directory has been created, which may
contain common test data for the test suite. When the test suite provides common
actions, one may also create an actions sub directory by selecting data in the tree
and and using the "create a new test suite" action button above the test suite tree.
After creating the actions directory, Test and Suite options have to be switched off.

 -

4.1.1.3 Creating a new test case

In order to create a new test case for a test suite, any entry below the test suite
(e.g. data) must be selected before clicking the action button above the test suite
tree. After entering the name for the new test case the new test case is inserted:

Test and Suite option must be switched on. After creating a new test suite, the
Properties tab should be selected for entering a short description for the test case
and required test suite attributes. The result attribute should be used to indicate,
whether a successful test is expected or not.

Below the test case, a data directory has been created and a run file is stored to
the test case directory in order to mark the directory as test case directory. In order
to update the run action to be executes for the test case, the Files tab should be
selected:

- 48 -

The Merged actions list contains all actions inherited from upper test suites (in this
case from the main_suite). When changing data as inserting the two echo lines in
the example, the action will be localized automatically, i.e. the updated action will
be stored in the actions directory for the selected test case. This is also the case
for Merged data and Merged expected lists shown when selecting the Data tab.

The same way, the second test case for testing the copy function may be created.
The difference is, that the copy test requires input data to be copied. Input data
can be defined directly in the file system but also after selecting the data directory
below the copy test case:

 -

After updating (and localizing) the run action, the data directory below the copy
test case directory has to be selected. The "Create new file" action button above
the files list may be clicked. After entering the file name and confirming the action,
the file appears in the list. In case of text files it may be edited directly in the edit
filed below the file path. More complex structured test data may be edited using
the edit button left of the file path. In order to copy test data from another location,
one may also use the file dialog button above the Files list.

Notes: When switching off the suite option, the suite file will be deleted and the
test intention will disappear.

- 50 -

4.1.1.4 Create expected data

Expected data are one or more files, that contain the expected test results. All files
in the expected directory (Merged expected list) will be compared after running the
test with files having the same name in work_area/data. Theoretically, expected
data should be created before running the test, but practically, this becomes nearly
impossible in many cases and later we will see a more practical way for creating
expected data. Nevertheless, there is a way to create expected data files within
TestBrowser or within the file system. Expected data for a test case has to be
added to the expected directory below the test case. Usually, expected data
cannot be shared and will be provided for each test case separately. In general,
however, expected data could also be provides for a number of test cases in a
common parent test suite. When no expected directory has been created so far,
the expected directory has to be created. Select an entry below the expanded test
case (e.g. data) and click

4.1.1.5 Create a test run

After defining a number of test cases, one may create a test run. A test run refers
to all test cases to be tested in the test run. A test run gets a name, which is
requested when creating the test run. Before creating the test run, all test cases to
be added to the test run have to be checked in the test suite tree. When checking
a test suite, all test cases below the test suite will be added to the test run.

 -

Since any number of test runs may be created for the same set of test cases, test
runs should get a number or any other indicator after the name referring to the test
run content. After entering and confirming the test run name, the "Create a new
test run" action has to be clicked in the action button list above the test suites tree.
Now, the test run may be executed by selecting the Test runs tab.

After a test run has been created, it may be expanded by selecting any number of
test cases and/or test suites by activating corresponding check boxes in the tree.
Clicking on the "Create a new test run" button above the tree and selecting an
existing test run from the drop list in the dialog (instead of entering a new name)
will expand the selected test run. When test suites have been selected, all test
cases defined for the test suite and all subordinated test suites are added to the
test run.

- 52 -

4.1.1.6 Execute test run

In order to run a single test run, i.e. all test cases for the test run, one has to select
the test run in the tree and click the run button above the list.

One may also select several test runs by activating check boxes besides the test
nun name. In order to run a single test or several single tests, tests have to be
selected by clicking the check boxes beside the tests (green entries).

After running the test, tests successfully executed are displayed with green color.
Tests failed become red. On the right side test results are listed for all executed
tests and start/stop statistics are shown in the log file box as well as in the tree.
Log file statistics are created by the command shell test framework while tree
statistics are created by TestBrowser.

Before rerunning a test one may clear log file and result data by clicking the "clear
file content" button above the text field.

In order to get test summary information, one may use the "Create test
summary ..." button above the list.

 -

The layout for test run summaries may be overloaded by an external OSI function
TestRun::Protocol(TextFile &file). The file created is stored in the file
TestSummary.txt in the test run directory below TestRun/test_runs.

4.1.2 Rebuild test database from directories

The test database is just a mean for managing test resources in a more
comfortable way. The database can always be rebuild from information stored in
directory and several files. Thus, one may also define test cases in the file system
and starting TestBrowser later.

When no test database exists when starting TestBrowser, it will be created
automatically by reading test suites, test cases and test runs from directory
structure and connecting test suites with test runs. While rebuilding the database,
a progress window shows the number of directories processed.

For large databases with several thousands tests this may take several minutes.
Hence, it is better to run test databases by themes rather than having everything in
one test database. This makes it also easier to manage test environments in a sub
versioning system as SVN or GIT.

More details about TestBrowser functionality is provided in chapter "Action
Reference".

- 54 -

4.2 Action reference

The action reference guide describes actions supported by TestBrowser. The
chapter describes different actions supported by TestBrowser ordered by themes

As example, we use the ODABA release test database, which provides tests foe
each new release.

4.2.1 Running ODABA tests

In order to view or run ODABA tests, which are delivered in file ODABATest (.zip or
.tar.bz2), one may start TestBrowser from the installed test root directory
(TestBrowser.sh under Linux and TestBrowser.cmd under Windows).

Usually, the database is available and the TestBrowser starts immediately. When
no database has been provided (or when it has been deleted), a new database will

be created. While importing test environment data from test suites and test runs a
progress window appears displaying the number of directories already processed
(about 300 test suite and 500 test run directories).

The tree shows three test suites (API, OSI and Utilities). Test suites are displayed
with blue letters. The action directory on top contains test environment specific
actions. Action directories and other directories not marked as test suite or test
case are displayed with black letters. After expanding the tree test suites, several

 -

subordinated test suites and test cases are displayed. Test cases are displayed
with green letters (e.g. OShell or CheckDB).

4.2.2 Main menu and main toolbar

There are just a few actions provided in via main menu or main toolbar, which
mainly refer to application layout.

4.2.2.1 Show/hide message area

The toggle button allows showing or hiding the message area. Usually, the
message area is shown automatically, when a message is written to the
area. This, however, depends on the applications and sometimes, the

output area has to be activated explicitly.

4.2.2.2 Show/hide selection tree

The action allows hiding and showing the main tree. Usually, the main tree
is visible when starting the application. When the application has been
closed with hidden selection tree, the tree is also hidden, when restarting

the application.

4.2.2.3 Edit common and user-defined settings

The action opens the option dialog, which allows updating or creating
option values for the application. Options may be defined as common and
as user-defined options. When starting the applications, COMMON options

are loaded first and might be overwritten by user-defined (or default) option
settings.

Options may be referred to in OSI actions (Option class) and in application
designer. Since options are stored within the database, they will get lost, when
recreating the database. In order to reuse options updated or created later on,
those have to be exported to an ini- or configuration (xml) file when being
changed.

4.2.2.4 Exit application

The action terminates the application. Changes made in the application are
stored automatically.

- 56 -

4.2.3 Test suite tree
The test suite tree is a directory tree that contains entries for (hierarchical) test
suites and subordinated test cases. Besides test suites and test cases, other
directories not identified as test suite or test case are displayed.

The tree shows test cases with green letters and test suites with blue letters. Other
directories are displayed with black letters. When test cases are associated with

est runs, test runs are listed at the end of the
subordinated directory list using the test run
icon instead of the directory icon.

Except test runs the tree exactly reflects the
directory structure in the file system below the
test root directory.

Usually, each test root directory contains an
action directory with default actions for
preprocessing, run and postprocessing
actions.

Since test cases require a test suite parent, the
top level in the tree must not contain test
cases. The application allows test cases on top
level, but the command line test framework
may get problems.

The parent of a test case or test suite (except
top test suites) should be a test suite. Inheriting
data, expected and actions stops when a
parent is not a test suite.

Available actions for the tree are shown in the
toolbar above the test suite tree. Default actions are provided via context menu
(right mouse click on the list. Actions are described in following topics. Actions are
listed according to toolbar button sequence from left to right.

Usually, the test suite tree automatically updates as soon as something has
changed (e.g. new directories (expected, actions created because of marking a
test suite as test case). When tree has not been refreshed, it may be refreshed
explicitly via context menu action Refresh.

 -

4.2.3.1 Create or extend test run

The action creates or extends a test run with test cases selected from the
test suite tree. Before starting the action, test cases for which run entries
(tests) are to be created should be marked by activating the check box.

Activating the check box for a test suite will include all subordinated test cases as
well as all test cases of subordinated test suites.

The action starts with a dialog requesting the name for
the test run. One may enter a new test run name or
select a test run from the drop list of the name field.
When an existing test run has been selected, the
selected test run will be extended. Selected test cases
that have got already run entries in the selected test
run are ignored.

4.2.3.2 Create test environment directory

The action creates a new test environment directory in the tree. In order to
select the region in which the entry should be created, one existing entry in
the region has to be selected. The type of the directory created (test suite,

test case, other) also depends on the selected tree entry. Nevertheless, the tape
may be changed later.

The action pops up with a name dialog for entering
the directory name. After entering the name and
confirming, the new directory is created in database
and file system. In case of test suites, also a data sub
directory is provided. For test cases, an actions and
expected directory will be created in addition. All
directories area created in the database as well as in
the file system.

4.2.3.3 Copy test environment directory

The action copies the entry selected in the test case tree within the current
region. Copying the entry includes copying all subordinated database

entry. The action also copies the file system directory and all its subordinated files
and directories.

- 58 -

The action pops up with a name dialog for entering
the new directory name. After entering the name and
confirming, the new directory is created. Names for
subordinated entries and directories remain
unchanged.

In order copy or move a test directory to another
region in the tree, one may use file system functions
and reload the complete test suite tree or parts of it.

4.2.3.4 Rename test environment directory

The action allows changing the name for a test suite directory in the
database and in the file system. Renaming default directories data, actions
and expected will prevent renamed directories from hierarchical

inheritance.

4.2.3.5 Delete test environment directory

The action deletes all selected test environment directories (check box
activated in the test suite tree) and all its subordinated directories and files
in the database as well as in the file system. When no check box is

activated in the list, the currently selected entry is deleted, i.e. in order to delete a
single test environment directory the corresponding line has to be selected, only,
before clicking the button. By default, deletion happens immediately without
warning.

In order to obtain a warning dialog before deleting a
selected entry, the option variable
ASK_BEFORE_DELETE has to be set to true
(TestBrowser ini- or configuration file). Then, a
deletion confirmation is required by popping up a
deletion dialog.

4.2.3.6 Update test environment directory status

The test environment directory status (test case, test suite) depends on
existence of files test and suite in the test environment directory. In case of
test file exists, the directory is supposed to define a test case. In case of

suite file exists (but no test file), the directory is considered to be a test suite
directory. When test and suite files do not exist, the directory is considered to be
any other test environment directory.

The test environment directory status is reflected in database directory entries in
attributes test and suite. When the files have been changed in the file system, the
status in the database is automatically updated only for entries selected in the
tree. In order to update directory status for all entries, this action may be called.

 -

After updating directory status, Refresh action should be called via context menu
for updating tree colors.

4.2.3.7 Reload test environment directory structure

The action may be called in order to synchronize file system and database
directory structure. The file system has higher priority, i.e. all files and
directories that do not exist anymore in the file system are also deleted in

the database. Files and directories that exist in the file system but not in the
database will be added to the database.

Updating the complete database may take a while. A progress window shows the
number of directory entries already processed. In order to reload part of the file
system below a selected directory, the Reload action from test suite tree context
menu may be used.

4.2.3.8 Import test environment from CSV file

The action allows importing test suites and test cases from a CSV file. The
action prompts for an output file name and imports test suites and test
cases from the selected file, which is assumed to be a CSV (tab or

semicolon separated) file.

The import logic depends very much on specific requirements, i.e. it makes a big
difference importing e.g. requirements from Doors in order to create test suites for
a requirement driven test environment or importing test cases from another test
environment. Hence, the import logic has to be implemented by customer in
DirEntry::ImportFromCSV function (see programmer's reference).

4.2.3.9 Export test environment to CSV file

The action allows exporting test suites and test cases to a CSV
(semicolon separated) text file. The action prompts for an output file name
and exports test suites and test cases to the selected file.

The export logic depends very much on specific requirements. Hence, the export
logic has to be implemented by customer in DirEntry::ExportToCSV function
(see programmer's reference). Programming examples are provided.

- 60 -

4.2.4 Edit test suite, test case and other directories

When selecting a test directory in the test suite tree, relevant data from the
selected test environment directory are displayed in the edit window on right side:

The headline shows the directory name and the path relative to the test root
directory (ROOT_PATH environment or option variable). Depending on directory
type the title background is blue (test suite), green (test case) or yellow (other
directory).

Below the edit window are three tabs for selecting different views, which are
explained in subsequent topics.

 -

4.2.4.1 Edit test environment directory properties

The properties window displays the test environment directory properties.

For test suites, he test Intention describes the area or requirement covered by the
suite. For test cases, he test intention describes test conditions and expectations.
Since the data in this field is stored in the suite file for the directory, intention can
be entered for directories marked as suite, only. When the directory is not yet
marked as suite, it becomes a test suite directory automatically after entering an
intention text.

The "Clear file content" button above the Intention field can be used for
clearing the complete text field. It does not delete the file but stores an empty

file.

The Test check box indicates, whether the directory describes a test case or not.
Test case directories contain a test file, which is usually empty. When activating
the check box, the file will be created. It will be deleted, when deactivating the
field.

The Suite check box marks a test suite directory. Test suite directories contain a
suite file that contains the description for the test intention. When activating the
check box, the file will be created. It will be deleted, when deactivating the field. In
order to store intention description for test cases, test case directories are marked
often as test suite, too.

- 62 -

The Attributes field contains extension attributes for the directory, which are stored
in the attributes file of the directory. The attributes file is created automatically,
when entering data in the field. Attributes have to be defined in the form

attribute_name=value

The value must not contain line break. Spaces before and after attribute_name are
considered as part of the name. Attributes can be accessed from within OSI
functions by calling DirEntry::GetAttribute() and
DirEntry::SetAttribute().

The "Clear file content" button above the Attributes field can be used for
removing all attributes from the attributes file without deleting the file.

4.2.4.2 Edit test environment actions and directory files

The files window displays directory files and test suite/case actions. In the upper
part there are two file lists. The lower part provides the content for the last file
selected in one of the lists (preprocessing action in the image below).

The Files list displays the files stored in the directory. File lists support several
actions via action buttons in the toolbar above the list, which are described in the
following subtopic "File list actions".

The Merged actions list contains the actions that are called when running a test.
All files contained in actions sub directory for the current and all parent directories
are collected. Actions in lower actions directories get higher priority, i.e. those will

 -

overwrite actions in higher actions directories. The current actions directory has
got highest priority. Actions supported for the list are described in "Merged actions
list actions".

The File text field displays the file content. The file content edit field is described in
a separate chapter "Edit file content".

4.2.4.3 Edit test environment data

The files window displays merged test data and expected files. In the upper part
there are two file lists. The lower part provides the content for the last file selected
in one of the lists above (expected output.out in the image below).

The Merged data list displays the files that are used when running the test. All
files contained in data sub directory for the current and all parent directories are
collected. Data files in lower data directories get higher priority, i.e. those will
overwrite data files in higher data directories. The current data directory has got
highest priority. Actions supported for the list are described in "Merged data list

actions".

The Merged expected list contains the expected files that are used for comparing
test results after running the test. All data files contained in expected sub directory
for the current and all parent directories are collected. Data files in lower expected
directories get higher priority, i.e. those will overwrite data files in higher expected
directories. The current expected directory has got highest priority. Actions
supported for the list are described in "Merged expected list actions".

- 64 -

The File text field displays the file content. The file content edit field is described in
a separate chapter "Edit file content".

4.2.4.3.1 File list actions

File lists show files in a directory (Files, Work area) or merged file lists containing
files from all sub directories ao certain kind (data, actions, expected) in the test
suite parent hierarchy. Depending on different file lists, a set of actions is
supported shown in the toolbar above the file list.

Refresh list content

Sometimes the displayed list is not up to date. In order to update data
displayed in the list with current database content, the action may be
clicked. For merged lists the collection is re-evaluated.

Insert file

The function allows inserting a file to the selected directory. A file dialog
pops up for selecting a file in the file system. After confirming, the file is
copied to the selected directory and added to the file list.

Create a new file

The action creates a new file in the selected directory. In order to enter the
file name, a dialog pops up. After entering the name and confirming, en
empty file is created in the selected directory.

Copy file

The action copies the selected file within the selected directory. In order to
enter the file name for the copy, a dialog pops up. After entering the name
and confirming, a copy of the file is created in the selected directory.

Edit file

External editors may be called directly via this action. In order to call file
editors via file extension, a file association has to be defined in the system.
When this is not the case, an ODABA file association may be defined in the

ini- or configuration file in. Finally, one may define a test browser file association
by adding a section with the extension name and define a variable CALL below,
that provides the external editor function call (see FileEntry::Edit() in
"TestBrowser Programmer's Guide").

Localize selected file

Localizing the file will create a copy of the file in the appropriate sub folder
(data, actions or expected) of the current test suite or test case directory.
When the file does already exist in this directory, nothing will happen.

 -

Copy file to expected directory

The action copies the selected file to the expected directory of the selected
test suite or test case. Typically, this action is used for creating expected
data files in the expected directory after running the test and expecting the

result in the work_area/data directory (Work area).

4.2.5 Edit file content

File content may be displayed or updated with an internal or external file editor.
The internal file editor may be used for editing text files up to 1 MB. External file
editors are usually called for none text files or larger files.

For text files, the content may be edited directly in the text box below. When
updating data that is not stored for the selected test suite or test case, the data will
be localized automatically, i.e. the updated content is not stored in an upper test
suite directory (data, actions or extended sub directory), but in the corresponding
sub directory of the currently selected test suite or test case. In order to update

common data, one has to select the test suite owning the file.

The file editor supports the actions described below.

Use external editor

External editors may be called directly via this action. In order to call file
editors via file extension, a file association has to be defined in the system.
When this is not the case, an ODABA file association may be defined in the

ini- or configuration file in. Finally, one may define a test browser file association
by adding a section with the extension name and define a variable CALL below,
that provides the external editor function call (see FileEntry::Edit() in
"TestBrowser Programmer's Guide").

Localize selected file

Localizing the file will create a copy of the file in the appropriate sub folder
(data, actions or expected) of the current test suite or test case directory.
When the file does already exist in this directory, nothing will happen.

Clear file content

The action can be used for clearing the complete file content. It does not
delete the file but stores an empty file. When the file is not owned by the
selected test suite or test case, it will be localized before being updated.

- 66 -

Delete file

When the file is owned by the selected test suite or test case directory, it will
be deleted. Otherwise, the action does nothing.

4.2.6 Test suite tree

The test run tree is a directory tree that lists test run directories on top (e.g.
LocalV13.0) and test directories (e.g. Dictionary) on next lower level. Test
directories (RunEntry instances) are arranged in a similar hierarchy as test suites
and test cases, but below the test_runs directory. In the list, tests are displayed on
same level in order to increase readability.

As long as test runs are not executed, tests are displayed with blue characters and
run time statistics (start, stop, duration) are empty. After executing a test run or a
single test the line becomes green, when test succeeded and red otherwise. Time
statistics are filled. For better traceability, below each test the corresponding test
case (here Dictionary, too) is displayed. This allows viewing test case properties
(description, attributes etc.)

 -

Below the test case, the parent test suite (e.g. Local) is displayed, that provides
the requirement tested with the test case or in general, the test intend. Below the
parent test suite, the parent's parent test suite (e.g. API) is shown etc., i.e. the tree
shows the inverse test suite hierarchy. This directory hierarchy contains all
information that may influence the test, i.e. data, actions and expected results

Selecting one of the tree entries will show entry type specific properties on the
right side property window. This also displays the path to the selected directory
within the file system.

Tests that cannot be expanded cannot be executed, since test data and actions
defined in associated test case and parent test suites is not available. Usually,
when removing a test case, all associated tests are removed as well. In case that
unlinked tests appear in the list, those should be removed.

Available actions for the tree are shown in the toolbar above the test run tree.
Default actions are provided via context menu (right mouse click on the list.
Actions are described in following topics. Actions are listed according to toolbar
button sequence from left to right.

Usually, the test suite tree automatically updates as soon as something has
changed (e.g. new tests created via test suite tree). When tree has not been
refreshed, it may be refreshed explicitly via context menu action Refresh.

4.2.6.1 Create a test run

The action creates a test run without tests. The action starts with a dialog
requesting the name for the test run. After entering a new test run name
and confirming, the test run will be created.

4.2.6.2 Run selected tests from test run tree

The action executes all selected tests (check box activated) in the test run
tree. When test runs are checked, all tests defined in the test run are
executed. When no check box is activated in the list, the currently selected

entry is executed, i.e. in order to run a single test or execute a single test run, the
corresponding line has to be selected, only, before starting the action.

4.2.6.3 Provide test data in work area

The action restores test data in the work area. When test execution failed, it
might be necessary repeating the test by running a debugger. In this case,
test data must be provided as at the beginning of test execution (since work

area data may change during test).

Restoring test data is a feature of the command line test framework (global action
SetupWorkArea), which is called when executing this action.

- 68 -

4.2.6.4 Delete selected tests from tree hierarchy

The action deletes all selected tests (check box activated) in the test run
tree. When test runs are checked, all tests defined in the test run are
deleted. When no check box is activated in the list, the currently selected

entry is deleted, i.e. in order to delete a single test or a single test run, the
corresponding line has to be selected, only, before clicking the button.

In order to obtain a warning dialog before deleting
each selected tree entry, the option variable
ASK_BEFORE_DELETE has to be set to true
(TestBrowser ini- or configuration file). Than, a
deletion confirmation is required by popping up a
deletion dialog.

4.2.6.5 Update test and test run status

The test run and tests status depends on existence of files compare.out
and errors.out in the test directory. Since the content of this files may have
changed (e.g. because of external test execution), the test and test run

state may be not up to date. The consequence is a possible incorrect color when
displaying the tests and test runs in the tree. This action may be called in order to
update the test and test run status.

4.2.6.6 Reload test runs and tests

The action may be called in order to synchronize file system and database
directory structure. The file system has higher priority, i.e. all files and
directories that do not exist anymore in the file system are also deleted in

the database. Files and directories, that exist in the file system but not in the
database will be added to the database. Updating tests also includes providing the
link to the associated test case.

Updating the complete database may take a while. A progress window shows the
number of directory entries already processed. In order to reload part of the file
system below a selected directory, the Reload action from test run tree context
menu may be used.

4.2.6.7 Export test environment to CSV file

The action allows exporting test runs and tests a csv (semicolon separated)
text file. The action prompts for an output file name and exports test runs
and tests to the selected file.

The export logic depends very much on specific requirements. Hence, the export
logic has to be implemented by customer in TestRun::ExportToCSV function
(see programmer's reference). Programming examples are provided.

 -

4.2.6.8 Create test summary for selected test run

The action allows creating a test summary text file for the selected test run.
The test summary is written to the test run directory
(.../test_runs/selected_test_run/TestSummary.txt). The content of the

generated file is displayed in the edit window in the Test summary field.

The layout and content of the test summary depends very much on specific
requirements. Hence, the test summary logic has to be implemented by customer
in TestRun::Protocol function (see programmer's reference). Programming
examples are provided.

4.2.7 Run entry

For each test case, several run entries may be executed (e.g. for each new
release). Results for each executed test are stored for the run entry. The run entry
refers to a number of text files stored in the run entry directory. Data for a run entry
may be displayed in the Properties of Files view for the run entry.

4.2.7.1 Run entry Properties view

Run entry properties show the results for a single test. One may also provide test
run specific information for the test.

- 70 -

Data shown in the fields is the content of several files stored for the test run entry.
Intention: The test intend is taken from the test case and should not be changed
here (test). In Run information (TestSummary.txt) one may add special events
happened during test. The test result is obtained by comparing expected data and
data created by test. Differences detected by calling diff are shown in the
Compare area (compare.out).

Data in all fields may be edited. In order to clear one of the fields, the clear
button right above the field may be used. Clearing the content of the field also

means clearing the content of the file displayed in the field.

 -

4.2.7.2 Run entry Files view

The Files view for a run entry shows the files stored in the run entry directory.

The Files view shows two file lists. Files shows the files stored in the run entry
directory. The work area file list shows the files from last test (input and output
files). The list will be refreshed when running the next test. When selecting a file
entry in one of the lists, the file content is displayed in the file edit area below the
lists.

When a test failed to run (red title), the reason is either a program error or invalid
test data. In case of invalid test data, the result in the work area has to be
checked. When the result corresponds to actual expectations, the new result file
may be copied to the test suite expected directory by clicking the "copy to
expected" button above the work area file list.

- 72 -

4.2.7.2.1 File list actions

File lists show files in a directory (Files, Work area) or merged file lists containing
files from all sub directories ao certain kind (data, actions, expected) in the test
suite parent hierarchy. Depending on different file lists, a set of actions is
supported shown in the toolbar above the file list.

Refresh list content

Sometimes the displayed list is not up to date. In order to update data
displayed in the list with current database content, the action may be
clicked. For merged lists the collection is re-evaluated.

Insert file

The function allows inserting a file to the selected directory. A file dialog
pops up for selecting a file in the file system. After confirming, the file is
copied to the selected directory and added to the file list.

Create a new file

The action creates a new file in the selected directory. In order to enter the
file name, a dialog pops up. After entering the name and confirming, en
empty file is created in the selected directory.

Copy file

The action copies the selected file within the selected directory. In order to
enter the file name for the copy, a dialog pops up. After entering the name
and confirming, a copy of the file is created in the selected directory.

Edit file

External editors may be called directly via this action. In order to call file
editors via file extension, a file association has to be defined in the system.
When this is not the case, an ODABA file association may be defined in the

ini- or configuration file in. Finally, one may define a test browser file association
by adding a section with the extension name and define a variable CALL below,
that provides the external editor function call (see FileEntry::Edit() in
"TestBrowser Programmer's Guide").

Localize selected file

Localizing the file will create a copy of the file in the appropriate sub folder
(data, actions or expected) of the current test suite or test case directory.
When the file does already exist in this directory, nothing will happen.

Copy file to expected directory

The action copies the selected file to the expected directory of the selected test
suite or test case. Typically, this action is used for creating expected data files in

 -

the expected directory after running the test and expecting the result in the
work_area/data directory (Work area).

Delete file

When the file is owned by the selected test suite or test case directory
(merged list) or when the file is a file of the directory, it will be deleted.
Otherwise, the action does nothing.

When deleting a file displayed via a merged list, the localized version is deleted
and a corresponding file owned by the next available file from higher parent test
suite will be displayed.

4.2.7.2.2 Edit file content

File content may be displayed or updated with an internal or external file editor.
The internal file editor may be used for editing text files up to 1 MB. External file
editors are usually called for none text files or larger files.

For text files, the content may be edited directly in the text box below. When
updating data that is not stored for the selected test suite or test case, the data will
be localized automatically, i.e. the updated content is not stored in an upper test
suite directory (data, actions or extended sub directory), but in the corresponding
sub directory of the currently selected test suite or test case. In order to update

common data, one has to select the test suite owning the file.

The file editor supports the actions described below.

Use external editor

External editors may be called directly via this action. In order to call file
editors via file extension, a file association has to be defined in the system.
When this is not the case, an ODABA file association may be defined in the

ini- or configuration file in. Finally, one may define a test browser file association
by adding a section with the extension name and define a variable CALL below,
that provides the external editor function call (see FileEntry::Edit() in
"TestBrowser Programmer's Guide").

Localize selected file

Localizing the file will create a copy of the file in the appropriate sub folder
(data, actions or expected) of the current test suite or test case directory.
When the file does already exist in this directory, nothing will happen.

- 74 -

Clear file content

The action can be used for clearing the complete file content. It does not
delete the file but stores an empty file. When the file is not owned by the
selected test suite or test case, it will be localized before being updated.

Delete file

When the file is owned by the selected test suite or test case directory, it will
be deleted. Otherwise, the action does nothing.

4.2.8 Test run

Test runs represent a list of tests from one or more test suites. Test runs are
created for running release tests but also for collecting tests for a certain area (e.g.
local and client/server tests). Results for each executed test run stored in the test
run directory containing a number of text files. Data for a test run may be displayed
in the Properties of References view for the test run.

 -

4.2.8.1 Test run Properties view

Test run properties show the results for tests in the test run. As long as data in
protocol fields is not cleared, test information for each test is appended at the end

of each protocol list.

The Results area writes a line for each test with success (or failed) information.
The Log file contains information about start and stop time for each test. The Test
summary area is filled when clicking the test summary button above the test
summery list.

All fields display file content of files stored in the test run directory. One may
change the field content, which automatically will change the file content. In order
to clear result list, log file or test summary, the clear button right above the field
may be clicked.

- 76 -

4.2.8.2 Test run References view

The References view for a test run shows the files stored in the test run directory.

The References view shows two file lists. Files shows the files stored in the test run
directory. The work area file list shows the files from last test (input and output
files). The work area list will be refreshed when running the next test. When
selecting a file entry in one of the lists, the file content is displayed in the file edit
area below the lists.

 -

4.3 Database access

Database access provides extended features for evaluating or manipulating test
data and results. Database entries are, in case of test suite hierarchy similar
structured as directories in the file system below the main_suite directory. Test
runs are collecting different tests to be executes in a list of subordinated run
entries. In this case, the list of run entries, which is flat, does not reflect the
directory structure for tests in the test_runs directory.

The database is an ODABA database, i.e. it provides data by means of en object-
oriented data model. Thus, the database may be considered as kind of external
memory. The OSI script interface provides enhanced query features, which look
similar to Java or C# program code.

Since the TestBrowser application is completely written in OSI, one may also
customize implemented function by providing those in an OSI overload directory
(see examples at the end).

Besides database access functions, OSI provides a File class for accessing files
and directories in the file system. It also supports data exchange between CSV
and XML files for importing or exporting test requirements or results.

Also supported by TestBrowser is access to extension attributes stored in the
attributes file for any directory.

- 78 -

4.3.1 Database model

The database model is quite simple as shown in the picture below:

The database provides several entries (extends) for accessing the database.
Detailed description for the data types is provided in chapter "Complex data
types". Extents are global database variables, the provide immediately access to
data:

 TopEntries - Provides all main suites defined in the test system
 DirEntry - Provides all directory entries for test suites and test cases
 TestRun - Provides all test runs
 RunEntry - Provides run entries for all test runs

 -

In order to access database instances, one starts with one of these entries
following the traversal paths defined by the object model.

4.3.2 Accssing data in TestBrowser database

In order to access TestBrowser data in the TestBrowser database, one may run
OShell, which provides a tool similar to command shell. Another way is using OSI
scripts or combining OSI with OShell.

The example below shows how to create a final test protocol and a summary
listing all successfully executed test intends. Since test intends are often not
defined for single test cases, but for the test suite containing the test cases, the
example tries to read intend from test case and if not existing from parent test
suite.

// combined access
// enable OSI debugger
//set OSI_DEBUG=YES
set DSC_Language=English

// change database to data source TBDat (OShell.ini)
 cd TBDat

// activate user defined osi functions from OSILibrary path (OShell.ini)
 osi do
 dictionary.loadOSILibraries;
 end

// change collection of test runs
 cc TestRun
// change access key and locate instance
 co sk_Name
 loc "LocalV13.0"
// change to collection of test runs (RunEntry) for this TestRun
 cc run_entries
// run embedded osi function for listing successful executes test runs
osi begin
VARIABLES // required for variable definitions, only, may be
omitted
 string line;
 string intend;
 int total = 0;
 int successful = 0;
 int err = 0;
PROCESS // required only in connection with VARIABLES section
 while (next())
 switch (success) { // 1: success; 0: error; -1: not executed
 case 1 : line = displayname + '\t';
 if (test_suite.tryGet(0)) {
 intend = test_suite.ReadData("suite"); // file suite
contains intension description for testcase
 if (intend == "") // inhrits intend from parent test suite
 if (test_suite.par.tryGet(0))
 intend = test_suite.par.ReadData("suite");

- 80 -

 line += intend;
 }
 Message(line); // use File::writeLine for writing data
to file
 ++successful;
 break;
 case 0 : ++err;
 break;
 }
 Message("Testrun contains " + (string)count() + " tests.");
 Message("Successful: " + (string)successful);
 Message("Failed : " + (string)err);
end

4.3.2.1 Database access via OShell

OShell acts similar to a common shell of the operating system. The difference is,
that drives correspond to databases defined in data sources and directories in the
file system correspond global and local collections, i.e. extents and local
collections in object instances. Details for OShell commands are provided in
ODABA Utilities/OShell.

In order to run an OShell script, an ini-file (OShell.ini) is required. The TestBrowser
delivery provides both, an OShell.ini file and an OShell.cmd file for calling the
OShell. When changing the environment after installing a TestBrowser system
provided with default configuration, one has to adopt, probably, the common file as
well as the ini-file.

When calling OShell.ini with ini-file parameter, only, a command prompt appears
requesting further input. One may, however, also prepare OShell scripts in
advance (like command procedures) and passing those as additional (second)
parameter to the program call.

The Example below shows some features when running an OShell script simply by
calling OShell.cmd.
Running L:\odet\OShell.exe with:
 ini-file: OShell.ini
 script file:
ODABA>cd TBDat
TBDat>cc TopEntries
TBDat/TopEntries>li
 1
 150
 200
 278
TBDat/TopEntries>loc 0
TBDat/TopEntries>p
 __AUTOIDENT=1
 name=API
 path=%ROOT_PATH%
 size=0
 directory=Y
 deleted=N

http://www.odaba.com/content/downloads/documentation/3.1_DatabaseUtilities.pdf

 -

 read_only=N
 last_loid=0
 rel_path=
 notes=
 suite=Y
 test=N
 displayname=API
TBDat/TopEntries>co sk_Name
TBDat/TopEntries>li
 actions
 API
 OSI
 Utilities
TBDat/TopEntries>loc API
TBDat/TopEntries>p
 __AUTOIDENT=1
 name=API
 path=%ROOT_PATH%
 size=0
 directory=Y
 deleted=N
 read_only=N
 last_loid=0
 rel_path=
 notes=
 suite=Y
 test=N
 displayname=API
TBDat/TopEntries>cc entries
TBDat/./entries>p count
 count=6
TBDat/./entries>li
 actions
 ClientServer
 data
 expected
 Local
 odaba
TBDat/./entries>loc Local
TBDat/./entries>cc entries
TBDat/../entries>p count
 count=19
TBDat/../entries>li
 actions
 Application
 Binary
 data
 Database
 Date
 DateTime
 Dictionary
 EnumeratorDefinition
 expected
 GlobalVariable
 IndexDefinition
 ObjectSpace
 Property
 PropertyDefinition

- 82 -

 String
 Time
 TypeDefinition
 Value
TBDat/../entries>q

4.3.2.2 OSI script for data exchange

There are many ways for defining data exchanges. Here, some examples are
provided in order to illustrate several possibilities. In order to provide OSI functions
overloading default implementations in TestBrowser, those have to be provided in
one or more files which are stored in the same directory.

When running TestBrowser, those function are loaded automatically, when the
directory path has been provided in ODABA option or environment variable
OSI_Library. In order to provide user defined OSI functions in OShell, one has to
load those functions in addition as shown below.

In order to refer to external data sources, a file description for import/export may
be defined. This setting is optional, since TestBrowser does provide dummy
functions for Import/export, only, which have to be overloaded in any case. Those
import/export functions define the way to refer to external files. The setting for
IMPEXP_DEF is required for the example, only.

OSI script language provides many other features, which cannot be illustrated
here. For more information see ODABA Script Interface.

// set OSI library path
set OSI_Library=%cd%/TestBrowser/osi/*.osi
// set external file description
set IMPEXP_DEF=%cd%/TestBrowser/osi/Imports.fsc

// OShell laoding user-defined OSI functions
// data source has to be opened first
 cd TBDat
// activate user defined osi functions from OSILibrary path (OShell.ini)
 osi do
 dictionary.loadOSILibraries;
 end

Example for simple export function

The export example creates a simple CSV output file filled with data from different
levels in the test case hierarchy.

http://www.odaba.com/content/downloads/documentation/4.4_OSI.pdf

 -

// the function overwrites default implementation in resource database
// and is called when pressing the export button in the Test Browser
application
// (above test suite tree).
collection bool DirEntry::ExportToCSV (string sPath)
{
VARIABLES
 SET < VOID > exp;
PROCESS
exp.openExtern(objectSpace,sPath,Option("IMPEXP_DEF").toString,"",odaba::
AccessModes::Write,false);
 ExportToCSV_intern(exp);
 exp.closeAll;
FINAL
 return(true);
};

collection bool DirEntry::ExportToCSV_intern (set< VOID > &exp)
{
 top;
 while (next) {
 if (test)
 ExportEntry(exp);
 entries.ExportToCSV_intern(exp);
 }
 return(true);
};

collection bool DirEntry::ExportEntry (set< VOID > &exp)
{
 exp.initializeInstance;
 if (!selected) {
 exp.test = "test";
 exp.isTest= "isTest";
 exp.dataRequirements= "dataRequirements";
 exp.result= "result";
 exp.testDescription= "testDescription";
 exp.testCase = "testCase";
 exp.caseDescription= "caseDescription";
 exp.suiteDescription = "suiteDescription";
 exp.suiteDescription = "suiteDescription";
 exp.comment = "comment";
 exp.save;
 } else {
 exp.test = displayname;
 exp.isTest= "true";
 exp.dataRequirements=(GetAttribute("Data"));
 exp.result=GetAttribute("Result");
 exp.testDescription=ReadData("suite");
 exp.testCase = par(0).displayname;
 exp.caseDescription = par(0).ReadData("suite");
 exp.testSuite = par(0).par(0).displayname;
 exp.suiteDescription = par(0).par(0).ReadData("suite");
 exp.comment = GetAttribute("Comment");
 exp.save;
 }

- 84 -

Import written in OSI code

The import example loads data from an CSV file, which defines a hierarchical
structure for grouping test cases in test suites. Tests cases are provided based on
software requirements, e.g. this is an example for requirement driven test. It is a
bit more complex than the export example, but it demonstrates several features
provided by OSI.

// The function overwrites the default implementation in TestBrowser
resource database
// and is called when pressing the import button in the Test Browser
application
// (above test suite tree).
//
// The function imports test cases from a requirements csv file with
following columns:
// id - requirement identifier
// description - requirement description
// testCatecory - coded test category (see description below)
// reviewState - Requirement review state
// lastModified - last modification of requirement
// This names ate taken from CSV file head line or from external file
description file.fsc
// The test suite hietarchy is setup according to testCategory value,
which is defined
// for each line in the import file:
// Hn_title - Heading level (n) with optional title (title)
// Tn - Test case with test priority (n)
// TH - table heading column (number of table columns results from
number of following
// TH records. Each line in a table defines a test case
// TCn - Table cell data, where the first column in a table line
defines the test case
// priority (n)
// Table lines result in one test case, but information is stored for all
cells in the test
// intend, which is filled with requirement description(s).
collection bool DirEntry::ImportFromCSV (string sPath)
{
VARIABLES
 extern ImportProgress importProgress;
 SET < VOID > imp;
 SET < DirEntry > &curSuite = self;
 String sCategory();
 string description;
 string title;
 string category;
 string id;
 string str;
 string type;
 string sType;
 string sTotal;
 int32 current;
 int32 priority = 0;
 int32 level = 0;
 int32 curLevel = 0;
 int32 colCount;

 -

 int32 curColumn;
 string(100) colTitle[20];
 bool bTableHeader = false;
 bool bTable = false;
 bool bHeader = false;
 bool bTest = false;
PROCESS
 imp.openExtern(objectSpace,sPath,Option("IMPEXP_DEF").toString,"",
 odaba::AccessModes::Read,true);
 sTotal = '/' + (string)imp.count;

 while (imp.next) {
 ++current;
 if (current%10 == 0)
 importProgress.Progress((string)current + sTotal);
 sCategory.assign(imp.testCategory);
 category = sCategory.splitTop('_');
 title = sCategory;
 type = category.left(1);
 sType = category.mid(1,1);

 switch (type) {
 case 'H' : level = category.mid(1).toInteger;;
 while (level > curLevel + 1) {
 curSuite &= curSuite.entries;
 ++curLevel;
 str = "Missing headline level " + (string)curLevel;
 curSuite.CreateSuite("",0,curLevel,str,"",imp);
 Message(str);
 }
 if (level == curLevel + 1) {
 curSuite &= curSuite.entries;
 curLevel = level;
 } else while (level < curLevel) {
 curSuite &= curSuite.parent;
 --curLevel;
 }
 id = imp.id;
 description = imp.description;
 priority = 0;
 bTable = false;
 bTableHeader = false;
 bTest = false;
 bHeader = true;
 break;
 case 'T' : if (!bTest) {
 curSuite &= curSuite.entries;
 ++curLevel;
 bTest = true;
 if (!curSuite.positioned) curSuite.tryGet(0);
 }
 bHeader = false;
 sType = category.mid(1,1);
 switch (sType) {
 case 'H' : if (!bTableHeader) {
 bTableHeader = true;
 colCount = 0;
 bTable = false;

- 86 -

 if (curSuite.positioned) {
 if (curSuite.entries.tryGet("0"))
 curSuite.entries.Delete;
 if (curSuite.entries.tryGet("1"))
 curSuite.entries.Delete;
 }
 }
 colTitle[colCount] = imp.description;
 ++colCount;
 break;
 case 'C' : if (bTableHeader || bTable) {
 bTableHeader = false;
 bTable = true;
 if (curColumn == 0) {
 id = imp.id;
 priority = category.mid(2).toInteger;
 }
 description += colTitle[curColumn] +
 ': ' + imp.description + '\n';
 ++curColumn;
 } else
 Message("Missing table header before
 column with ID: " + imp.id);
 break;
 default : priority = category.mid(1).toInteger;
 id = imp.id;
 description = imp.description;
 bTable = false;
 bTableHeader = false;
 }
 break;
 }
 if (type == 'H' || type == 'T') {
 if (bHeader ||
 (bTest && !bTable && !bTableHeader) ||
 (bTable && curColumn == colCount))
 {
 if (bTable)
 curSuite &= curSuite.entries;
 curSuite.CreateSuite(id,priority,curLevel,title,description,
 bHeader,imp);
 if (bTable)
 curSuite &= curSuite.parent;
 description = "";
 title = "";
 id = "";
 curColumn = 0;
 }
 }
 }
 imp.closeAll;
FINAL
 return(true);
};

 -

collection bool DirEntry::CreateSuite (string id, int32 priority, int32
level, string title, string description, bool bHeader, set< VOID > &imp)
{
 top;
 while (next)
 if (GetAttribute("ID") == id)
 break;
 if (!positioned) {
 Create(parent.FullPath,(string)NextNumber(count-2),true,false);
 if (!bHeader) {
 entries.Create(FullPath,"0",true,true);
 entries.SetAttribute("Result","success");
 entries.Create(FullPath,"1",true,true);
 entries.SetAttribute("Result","error");
 }
 }
 WriteData("suite",description);
 if (id != "") {
 SetAttribute("ID",id);
 if (bHeader)
 SetAttribute("Header",(string)level);
 else
 SetAttribute("Priority",(string)priority);
 if (title != "")
 SetAttribute("Title",title);
 SetAttribute("ReviewState",imp.reviewState);
 SetAttribute("LastModified",imp.lastModified);
 }
 displayname = DisplayName;
 return(true);
};

4.3.2.3 Common features

Besides access functions provided by OSI, TestBrowser provides extended
features. OSI functions implemented for database structures are described in
function reference and may be called from within any user defined OSI function.
Functions are provided on different interface levels:

 ODABA database access API
 ODABA utility functions (services)
 TestBrowser object class functions

4.3.2.3.1 ODABA Access functions

ODABA provides a comprehensive API providing support for database access
handles on different levels as well as for several helper classes. Nearly all classes
and functions are accessible from within C++, OSI and .NET languages.

Details for the ODABA API are described in:

ODABA Online Documentation/Reference documentation/ODABA Application
Interface, which is also provided as local HTML documentation when downloading
ODABA.

http://www.odaba.com/content/documentation/odaba/

- 88 -

4.3.2.3.2 ODABA service classes

In order to process files, XML structures, sending or receiving emails etc., ODABA
provides several service functions (since version 13). Nearly all classes and
functions are accessible from within C++, OSI and .NET languages.

Details for the ODABA service API are described in:

ODABA Online Documentation/Reference documentation/ODABA Application
Interface/Service Classes, which is also provided as local HTML documentation
when downloading ODABA.

4.3.2.3.3 TestBrowser functions

TestBrowser functions are provided for database object types (persistent data
types). A description of supported functions is available in "TestBrowser
Programmer's Guide".

http://www.odaba.com/content/documentation/odaba/

	1 Rules and principles for test frameworks
	1.1 Principles for arranging tests in test frameworks
	1.1.1 Test suite and test case
	1.1.1.1 Hierarchical test suites

	1.1.2 Running a test
	1.1.3 Managing tests within a test run
	1.1.4 Advanced concepts
	1.1.4.1 Test suite patterns
	1.1.4.2 Test suite templates
	1.1.4.3 Test suite inheritance
	1.1.4.4 Test suite version control
	1.1.4.5 Interface to test management

	1.2 Common example
	1.2.1 Running a test
	1.2.2 How to use the example frame work
	1.2.2.1 Preparing tests
	1.2.2.2 Making use of data inheritance
	1.2.2.3 Executing tests
	1.2.2.4 Test evaluation

	2 Test framework actions (Linux)
	3 Test framework actions (Windows)
	4 TestBrowser
	4.1 Using TestBrowser
	4.1.1 Creating a new test environment
	4.1.1.1 Update environment specific actions
	4.1.1.2 Create new test suite
	4.1.1.3 Creating a new test case
	4.1.1.4 Create expected data
	4.1.1.5 Create a test run
	4.1.1.6 Execute test run

	4.1.2 Rebuild test database from directories

	4.2 Action reference
	4.2.1 Running ODABA tests
	4.2.2 Main menu and main toolbar
	4.2.2.1 Show/hide message area
	4.2.2.2 Show/hide selection tree
	4.2.2.3 Edit common and user-defined settings
	4.2.2.4 Exit application

	4.2.3 Test suite tree
	4.2.3.1 Create or extend test run
	4.2.3.2 Create test environment directory
	4.2.3.3 Copy test environment directory
	4.2.3.4 Rename test environment directory
	4.2.3.5 Delete test environment directory
	4.2.3.6 Update test environment directory status
	4.2.3.7 Reload test environment directory structure
	4.2.3.8 Import test environment from CSV file
	4.2.3.9 Export test environment to CSV file

	4.2.4 Edit test suite, test case and other directories
	4.2.4.1 Edit test environment directory properties
	4.2.4.2 Edit test environment actions and directory files
	4.2.4.3 Edit test environment data
	4.2.4.3.1 File list actions

	4.2.5 Edit file content
	4.2.6 Test suite tree
	4.2.6.1 Create a test run
	4.2.6.2 Run selected tests from test run tree
	4.2.6.3 Provide test data in work area
	4.2.6.4 Delete selected tests from tree hierarchy
	4.2.6.5 Update test and test run status
	4.2.6.6 Reload test runs and tests
	4.2.6.7 Export test environment to CSV file
	4.2.6.8 Create test summary for selected test run

	4.2.7 Run entry
	4.2.7.1 Run entry Properties view
	4.2.7.2 Run entry Files view
	4.2.7.2.1 File list actions
	4.2.7.2.2 Edit file content

	4.2.8 Test run
	4.2.8.1 Test run Properties view
	4.2.8.2 Test run References view

	4.3 Database access
	4.3.1 Database model
	4.3.2 Accssing data in TestBrowser database
	4.3.2.1 Database access via OShell
	4.3.2.2 OSI script for data exchange
	4.3.2.3 Common features
	4.3.2.3.1 ODABA Access functions
	4.3.2.3.2 ODABA service classes
	4.3.2.3.3 TestBrowser functions

