

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010run

Terminology Model II

ODABA

- 2 -

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 - 3 -

Content

1 Terminology Model II .. 5

2 Knowledge Presentation .. 7

2.1 Objects ... 8
2.1.1 Individual and general objects.. 9
2.1.2 Intensional and extensional aspect 10

2.2 Object classes - grouping objects .. 11

2.3 Object types - what objects are ... 12

2.4 Object collections ... 14

2.5 Classification - creating class hierarchies 15
2.5.1 Classification aspects ... 17

2.6 Rules - how objects behave ... 19

2.7 Causalities - when objects behave .. 20

3 Terminology Model Object Types .. 21

3.1 Concepts and terms ... 22

3.2 Feature categories ... 23
3.2.1 Rules .. 25
3.2.2 Events .. 26
3.2.3 Causality... 27

3.3 Item .. 28
3.3.1 Type ... 30
3.3.2 Property .. 39

4 Terminology Model Reference ... 46

4.1 Terminology model rules .. 47

4.2 From Terminology Model to Database 49

4.3 Terminology Model Object Types .. 50
4.3.1 AggregationType - Aggregation type 52
4.3.2 Association - Associations ... 53
4.3.3 Category - Category ... 54
4.3.4 Causality - Causality .. 56
4.3.5 Characteristic - Characteristic .. 57
4.3.6 Classification - Classifications .. 58
4.3.7 Concept - Concepts and terms .. 60
4.3.8 DocumentReference - Document reference 63
4.3.9 Event - Events .. 65
4.3.10 Feature - Feature categories.. 67

- 4 -

4.3.11 FixedAttribute - Fixed attributes ... 70
4.3.12 Generalization - Generalization.. 71

4.4 Item - Item .. 72
4.4.1 Key - Keys .. 76
4.4.2 ObjectType - Object types .. 77
4.4.3 Part - Parts ... 82
4.4.4 Property - Property ... 83
4.4.5 Rule - Rules ... 88
4.4.6 TerminologyModel - Terminology model 90
4.4.7 TerminologyModule - Terminology Module 92
4.4.8 Type - Type .. 94
4.4.9 ElementaryTypes - Elementary types 95
4.4.10 EventTypes - Event types .. 97
4.4.11 FeatureTypes - Feature typesError! Bookmark not
defined.
4.4.12 ImportanceLevels - Importance levels 100
4.4.13 RuleTypes - Rule types .. 103

5 References ... 106

 - 5 -

1 Terminology Model II

Bringing human language and data modeling closer together is an important step

in modeling real world phenomena in IT applications. For this purpose, the termi-

nology model provides a conceptual and structured terminology definition.

Defining a terminology model is based on principles of expressing and structuring

human knowledge. The principles have been derived from the way knowledge is

expressed in human language, since this has been turned out to be the best prac-

tice for hundredth of years.

Concept and feature are the key terms for defining terminology models, where a

number of concepts and its features are defined. In order to provide detailed ter-

minology definitions, concepts and features are assigned to several categories

(concept or feature categories).

The "Terminology Model II" is the continuation of work that has been represented

in "Terminology Model I" [TM]. In order to provide more precise definitions, several

extensions have been made in the model structure.

The paper consists of three parts. The first part introduces the main concepts the

terminology model deals with (problem analysis). The second part provides com-

plete definitions and explanations for all concepts referred to in this paper (struc-

turing concepts) and the third part provides a detailed definition of these concepts

as structured terminology model (defining details). Thus, the paper not only de-

fines the terminology model as such, but is an example also for developing a ter-

minology model starting with high level problem analysis, i.e. the paper is doing

exactly what it is describing.

In order to bring together terminology and data modeling, the terminology stand-

ards as described in ISO 1087 and ISO 704 [1087] are referred to as terminologi-

cal source, where concepts and concept relations have been defined in order to

build concept systems. The ODMG Object Database Standard 2003 [ODMG] is

used as base for object database modeling, since this approach is more advanced

as the Entity Relationship Model. Unified Database Theory [UDT] is referred to as

detailed definition of data items, instances and collections and representation of

data in different types of databases.

Further on, the acronym TM will be used when referring to Terminology Model II

as model or as paper.

What is a terminology model

A terminology model is a mean for recording and presenting expert knowledge of

a certain area. TM provides both, a method for discovering subject expert

knowledge and a structured and formalized presentation of expert knowledge.

http://www.odaba.com/content/downloads/documentation/P2_TerminologyModel_v1.pdf
http://www.odaba.com/content/downloads/documentation/P1_UnifiedDatabaseTheory.pdf

- 6 -

TM is a method for describing expert knowledge within a certain subject field,

which covers two aspects:

 Terminology aspect - defining used concepts (term, meaning, usage etc.)
in a subject field

 Model aspect - provides a formal structured presentation of concepts,
which fulfills basic requirements of an object model (database model).

The goal of TM on the one hand is, to provide detailed definitions and, on the oth-

er hand, to support all phases of an IT application development process. Thus, the

TM also acts as interface between subject area experts and IT technicians.

Since the goal of TM is providing structured knowledge representation, the paper

investigates knowledge concepts and principles for expressing knowledge by

means of human language.

The paper will finally end up in a rather complex structure for TM, but many rele-

vant knowledge aspects are covered by a few TM concepts. Hence, different TM

levels will be defined, which can be used for different purposes or in different de-

velopment stages.

 - 7 -

2 Knowledge Presentation

Terminology models reflect principles of knowledge presentation by means of hu-

man language, i.e. here, knowledge presentation is considered as one way of ex-

pressing knowledge in terms of human language.

There are other ways of expressing knowledge like formulas or pictures. Transfer-

ring knowledge between human beings, however, is often based on human lan-

guage consisting of terms with an agreed meaning. Some essential principals of

human language are subject TM and are described below.

Subject of terminology studies is defining the meaning of terms used in human

language, the concepts. Thus, terminology is an essential part of knowledge

presentation by means of human language. A common way of defining concepts

and terns is described in [1087], which define concepts and concept relations as

important part of terminology definitions.

TM is based on concepts and concept relations as being defined in [1087]. But

terminology is more than defining concepts. Terminology provides common rules

in order to express specific views to the world. A specific view to the world, how-

ever, expresses the way experts have experienced a specific subject area.

It is not the intention of this paper to provide a complete definition of knowledge

presentation. Instead, it will focus on several aspects of knowledge presentation,

which are subject of a knowledge presentation by means of terminology. Several

principles of expressing knowledge by means of human language are in focus of

the paper:

 Discovering objects

 Building objects classes

 Defining Object types as abstraction of objects

 Grouping objects in object collections

 Classifying object in order to create object collections

 Describing behavior of objects

 Describing causalities by means of cause and reaction

These aspects of knowledge presentation have been subject of the development

of TM. This chapter will introduce concepts describing these aspects without defin-

ing them in detail, i.e. it only explains, what is the meaning of these concepts. A

more precise definition of the concepts is given in chapter "Terminology Model Ob-

ject Types".

- 8 -

2.1 Objects

An base for expressing knowledge is the concept of objects. Real world phenom-

ena are often called objects, regardless whether objects exist as "things" or just

as ideal concepts. In any case, objects are described by means of associated

concepts.

Without objects, a TM could not have been provided, i.e. no objects - no TM. Prac-

tically, this means that TM is useful only, when considering objects from different

perspectives. On the other hand, also human language is mainly based on ob-

jects. Considering nouns as typical references to objects, the importance of ob-

jects in human language becomes clear.

The concept of an object includes objects of any level of detail (or complexity).

Thus, also an object collection, a set of objects could be considered as object.

Similar, details of an object, its properties, can be considered as objects, again.

 - 9 -

2.1.1 Individual and general objects

Human language provides means for describing individual objects, but also gen-

eral objects. An individual object is a concept that reflects a particular object in-

stance (real world phenomenon or idea). Typically, individual objects are repre-

sented as list of individual properties (property values). A general object is a con-

cept that defines common features of a group of individual objects. E.g. Paul Miller

refers to an individual object, while person denotes a general object.

Since modeling is an abstract issue, in TM mainly general objects are considered.

In some cases, terminology, however, is defined in the context of an individual ob-

ject, e.g. an enterprise, i.e. concepts and terms get its specific meaning in the con-

text of this enterprise.

Typically, the meaning of general objects is transferred by means of examples

("This is a tree"). After being introduced to a sufficient number of trees, even a

child is able to recognize a tree without being able to define the concept of the

general object tree. Thus, many concepts for general objects are known, but not

defined in detail. In order to transfer knowledge between subject area experts and

IT experts it is, however, not sufficient to "know", what a general object is, but it

has to be defined precisely.

Knowledge presentation requires detailed definitions of general objects. Border-

lines for object classes have to be defined in order to distinguish objects referring

to different concepts.

- 10 -

2.1.2 Intensional and extensional aspect

A specific view to a group of individual objects depends on the higher context in

which this view has been defined. E.g. the view to a person is different from a stat-

istician's point of view or from the one of a tax authority. Thus, specific views to

objects may be defined within a certain context or as subordinated concepts of

another concept. Such a view to an object defines the intensional aspect of the re-

lated concept, the object type.

An object type is a concept that defines a specific view to a group of individual

objects, i.e. it defines the intensional aspect of a general object by means of sub-

ordinated concepts with different roles.

Since there are different views possible to any group of individual objects, several

object type definitions may apply to an individual object. Considering an object as

an entity in the real world (even though it becomes always difficult to draw border-

lines for an object), each object type definition applying to an individual object cre-

ates an image of the object called object instance. Since different views to ob-

jects are possible, individual objects may be associated with different object types.

Thus, several types may apply to an individual object and any number of object in-

stances may exist for an individual object (e.g. the person Paul Miller might be re-

flected as student, patient and twice as employee), i.e. there is a 1:M relationship

between individual objects and object instances.

 - 11 -

2.2 Object classes - grouping objects

Objects with common properties are often "collected" in object classes, which

represent abstract object collections. Classes are associated with names (terms,

designations), that relate to the class concept (intension) on the one hand and to

the class extension on the other hand.

Often, classes are based on intensional definitions by describing, what type of ob-

jects a class consists of, i.e. by defining an object type. But there exist also exten-

sional class definitions (especially for conceptual objects), where the elements of a

class are listed explicitly. Hence, class definitions include two aspects

 Extensional definition - describes the class by referring to objects be-
longing to the class

 Intensional definition - provides a conceptual definition of the object type
in terms of typical characteristics of the objects belonging to a class.

Classes are not given by nature, but are an expression of human knowledge and

the specific view to a certain subject area. Thus, an object may belong to any

number of classes, which just express different views to the objects. Usually, clas-

ses are referred to as nouns that are used as terms designated to particular class

concepts.

TM will not consider classes as such, but rather these two class aspects repre-

sented by object types (intensional) and object collections (extensional).

- 12 -

2.3 Object types - what objects are

Intensional class definitions may be defined as objects types. Typing reflects a

knowledge aspect based on class definitions. In order to describe details of an in-

dividual object, language refers to object properties (first name is Paul, second

name is Miller, weight is 75 kilograms or he has got children Jane, Anton and Mar-

ry). In order to refer to object instance data, property names and its meaning have

to be defined (first name, second name, weight or children). Thus, an object type

is typically defined by a number of property definitions.

Object types are concepts that are defined by a number of fixed and variable

characteristics, which describe relevant properties for objects of a given class and

concept relations that describe type of relations to other objects. Characteristics

and concept relations defined for an object type are called properties. Thus, ob-

ject types reflect a specific perspective to a set of objects associated with this type

and provide an intensional definition for objects in the object class associated with

the object type.

Object properties may be divided into four categories:

 Generalization - describes a concept that relates to a more general object
type.

 Characteristic - describes a fixed or variable characteristic of an object

 Part (of) - describes the parts an object consists of

 Association - describes the relations to other objects

Those property categories are defined in concept systems as concept relations

and characteristics [1087]. In data modeling they are known as inheritance, attrib-

utes and relationships [ODMG]. [UML] refers to property categories as generaliza-

tion, attributes, aggregation and association. More relations are known between

concepts as near or related concepts, i.e. this list of property categories is not

complete. But the categories mentioned above are those that are considered as

most relevant property categories for defining a terminology model as bridge be-

tween subject area and IT experts.

There is not always a clear distinction between property categories defined for an

object type. E.g. whether a wheel is a part of a car or whether it is associated with

a car depends on the view one has to the car. Thus, an object type does not de-

fine an object as such, but a certain view to objects of a given class. Moreover,

properties do not describe all the properties of an object, but relevant properties

from a certain perspective, only - the expert's view.

Many properties refer to other objects, which, again, are associated with an object

type that defines properties etc. Thus, there is an alternative type - property - type

- property ... relation, which provides a method of defining a concept system in a

consistent way until any level of detail. The alternating sequence usually ends,

 - 13 -

when a property refers to a type that does not have properties (elementary type or

classification).

- 14 -

2.4 Object collections

An object collection refers to set of objects. There might be different reasons for

collecting objects in an object collection. Those reasons mainly define the concept

of an object collection. Thus, the way, objects are assigned to object collections, is

a relevant aspect of expressing human knowledge.

Objects in object collections may require different treatment, as paid and unpaid

invoices are treated differently. The way, an object collections or objects within the

collection behave is also a relevant knowledge aspect.

An object collection is a concept that defines a set of individual objects. Object

collections can by defined as individual object collections (unpaid invoices of run

software) or as general object collections unpaid invoices). An individual object

collection is a concept that describes a specific set of individual objects. A gen-

eral object collection is a concept that defines those individual objects, which

may become element of the object collection, i.e. the general object collection de-

scribes the extensional aspect of an object collection. General object collections

could also be defined by intensional definition, i.e. by describing the role of the col-

lection (children of a person).

Usually, individual objects refer to individual object collections, i.e. a specific en-

terprise has got a specific collection of unpaid invoices according to the definition

of a general object collection unpaid invoices. Thus, an individual object collec-

tion refers to a specific set of individual objects, which represent the value of the

object collection [UDT].

In general, human language does not refer to object collections, but to object in-

stance collections, i.e. not objects are collected, but object instances. Thus, a per-

son being employed in two companies appears twice as employee, i.e. it results in

two employee object instances. Counting employees in this case will result in a

number greater than the number of existing individual objects (persons) in the

same context.

When all objects in an object collection belong to the same object type (e.g. per-

son), the collection becomes a typed object collection. Classes are specific

typed object collections, where the object collection consists of all individual ob-

jects of a given object type.

Considering object collections corresponds to the aggregation process in IT. A

more sophisticated way of defining object collections will be discussed "Classifica-

tion - creating class hierarchies".

 - 15 -

2.5 Classification - creating class hierarchies

In order to provide aggregated information about objects belonging to different

categories, individual objects can be classified by means of classifications. A

classification is a concept, which provides a mean for dividing an object collec-

tion into distinct subsets. A classification consists of a set of categories, which

create subsets (classified collections) for the object collection by associating each

individual object of the object collection with exactly one category.

In general, it is also possible to classify individual objects by other individual ob-

jects (ad-hoc classifications). It depends on the specific view and the subject area,

when to use a classification and when to use object references.

There where many discussions whether categories are metadata (i.e. defined on
the model level) or data stored in the database. Considering geographical classifi-
cations, a category refers to a certain country or geographical area, which, indeed,
is an individual object and hence, defined on the data level. On the other hand,
many statistics do not care about the individual object aspect of geographical ob-
jects but use those for classifying companies or persons. Thus, for a statistician,
geographical areas appear rather as categories than as individual objects. Finally,
both is right. It just depends on the way of reflecting reality.

Categories

Categories describe the rules for dividing an object collection into subsets. Usual-

ly, categories are defined as general categories not referring to a certain set of

objects. In principle, it would also be possible to define individual categories, that

refer to a set of individual objects. This is, however, not of interest within TM.

Typed and untyped classification

Often, classifications may apply to individual objects of a certain object type, only.

Applying a color classification referring to colors as categories to an object collec-

tion requires that individual objects in the collection have a color, i.e. the classifica-

tion may apply on "colored objects" (object type), only. Classifications applying to

individual objects of a given object type are called typed classifications.

A typed classification produces a number of subsets (but not necessarily sub-

classes), when applying to an individual object collection. Since individual objects

in the object collection belong to the same object type, the subset created for each

category can be defined as condition, which individual objects have to fulfill for be-

longing to a given category (e.g. all person objects with an age between 20 and 29

belong to the twenties category).

Practically, classifications also may apply to object collections containing individual

objects of any object type (e.g. by assigning individual object explicitly to catego-

ries). Classification not requiring individual object of a specific object type are

- 16 -

called untyped classifications. Usually, classifications refer to properties that all

individual objects must have in order to be classified, which means, that object to

be classified usually have a common object type that becomes the object type of

the classification.

Typed category

Categories of typed classifications may create subclasses. Considering a person

classification consisting of categories male and female, may create not only per-

son subsets, but also specialized person classes as men and women. In order to

produce specialized subclasses, the category requires an object type, which has

to inherit from the classifications object type. Categories producing subclasses ra-

ther than subsets are called typed categories.

Hierarchical classifications

Since a category creates a new object collection, another (sub) classification may

apply to this subset in order to divide it again. Thus, by combining classifications,

hierarchical classification can be defined. A set of hierarchical classifications

may form a classification system, where all (hierarchical) classifications included

refer to a common set of (flat) classifications.

Classification properties

Some classifications require additional characteristics in order to describe catego-

ries properly, e.g. the duration of study for education classifications. Thus, classifi-

cations support defining a number of properties for their categories.

Within a hierarchical classification, extension properties are supposed to exist for

all categories referred to in the hierarchical classification or on all categories de-

fined on the lowest hierarchy level.

 - 17 -

2.5.1 Classification aspects

Classifications are used in different ways, which express different aspects of a

classification. Depending on the specific view, the importance of classification as-

pects for different classification may differ.

General classification

A general or conceptual classification consists of a list of (hierarchical) categories,

which express a specific interest or view of the individual defining the classification

categories. Defining proper classifications is an important issue, which sometimes

may take years.

Typically, classifications apply on objects of a given type, i.e. general classifica-

tions are considered as typed classifications.

Classifying individual objects

One important purpose for defining classifications is classifying individual objects,

i.e. assigning objects to different well defined categories in order to determine the

behavior of objects more precisely (only persons with sex female are able to get

children). Thus, classifying individual objects and creating specialized object types

are similar processes.

Creating specialized object types

Indeed, by classifying objects, these objects become more specific, i.e. they are

associated with a more specific object type. Practically, categories are often not

considered as sub types, but simply as categories (male, female) assigned to ob-

jects of a given object type (person). Considering, however, biological classifica-

tions, it becomes obvious, that each category defines a more specialized object

type (animals --> birds --> swans).

Classified collections

Another common purpose of classifications is to divide individual object collections

into a set of (hierarchical) subsets, i.e. a classification provides a collection sche-

ma for creating a number of classified collections from an individual abject col-

lection.

Aggregation

Classified collections are often used for getting derived (aggregated) information

from those collections. In order to define properties for aggregated values (sum of

income, count), classified collections are considered as individual objects belong-

ing to the same object type, which defines the characteristics for classified collec-

tions. Since different views to classified collections are possible, any number of

- 18 -

object types might be defined for a set of classified collection, i.e. for a classifica-

tion, which are called aggregation types.

 - 19 -

2.6 Rules - how objects behave

Object types and properties provide a static definition of objects and object clas-

ses. An advanced knowledge approach, however, is to describe, how objects or

properties behave. Typically, the behavior of objects or properties is described as

common behavior of objects of a given object type ("birds are able to fly" or "things

are able to fall") or as common behavior of a property defined for an object type

(salary must not exceed $ 5000).

A rule is a concept, that describes the common behavior for individual objects of a

given object type or for individual properties as feature of an object type. In princi-

ple, rules could also be described as individual concepts, i.e. as the specific be-

havior of an individual object or property. Practically, this happens, when defining

a terminology model for a specific enterprise. Individual rules (e.g. reflected in an

application for this enterprise) are, however, not described for individual instances,

since the behavior of the enterprise is an internal behavior. Considering enterpris-

es in a broader context, general rules for enterprise object might be defined.

Hence, the TM considers rules as general concepts, only.

Rules are used for different purposes, e.g. for defining constraints or operations

for deriving information from other sources.

- 20 -

2.7 Causalities - when objects behave

Describing causalities (or reactions) is an even more advanced approach. Causali-

ties describe the cause or reason, which activates a certain behavior (action). De-

scribing causalities reduces the human interaction in a system or application, be-

cause the application can detect automatically, what is necessary to do and when.

The methods of describing causalities are not yet developed very well. Three ways

of describing causalities are considered in TM:

 Describing causalities as state or state transitions that cause an action
(activating a rule). E.g. when a person has been born (cause) it must be
registered in the birth register (action).

 Describing causalities as consequence of history e.g. sending a mail (ac-
tion) when a person has birthday. In fact, this does not differ in principle
from the first topic, but time plays a special role and thus, it becomes use-
ful to consider temporal causalities separately.

 Often, causalities are reflected in terms of process events as an individual
object has been updated, created or deleted. Usually, process events
cannot be expressed in terms of state transitions and are, typically, con-
sidered as internal or system events.

There are not so many areas dealing with causalities compared to static concept

definitions. On the other hand the introduction of process events in database sys-

tems and GUI environments has already shown powerful features based on event

handling.

 - 21 -

3 Terminology Model Object Types

In order to define a terminology model, several of concepts have to be defined,

which can be assigned to different concept categories. The following topics will in-

troduce different concept categories by explaining the meaning of these concept

categories. In this chapter, precise definitions of concept categories are provided.

Details of terminology model object types are described in "Terminology Model

Reference".

In the previous chapter, the following relevant concepts have been discovered:

 Object

 Class

 Object collection

 Object type

 Classification

 Aggregation type

 Behavior (rules)

 Causalities

Although objects are subject of terminology models, they will not directly play a

role within the terminology model. Not the objects itself, but different ways of rep-

resenting knowledge about objects are in focus of TM. In general, TM distin-

guishes between concepts relating to objects or part of it (items) and the features,

an item concept provides.

TM defines a hierarchy of items and its features. Hence, this chapter mainly intro-

duces categories for items and features.

- 22 -

3.1 Concepts and terms

An essential point of transferring knowledge is common understanding and refer-

ring to proper and well-defined terms.

Transferring knowledge, i.e. communication, is based on sequences

of symbols. A symbol is any kind of signal (visual, acoustical etc.)

with an agreed underlying meaning passed between sender(s) and

receiver(s). A term (single word or sequence of words) is a symbol

based on a sequence of letters and numbers. The meaning of a

term is not necessarily unique but it becomes unique in a certain

context. TM only considers terms as mean of expressing

knowledge. Other symbols as pictures or sounds are not considered

in TM.

Different terms may get the same meaning (synonyms). Synonyms

might be defined when being used within a subject area, but also, when terminol-

ogy changes. In the latter case synonyms allow mapping old terms to newer terns.

Terms are used for referring to concepts. [1087} defines a concept as "unit of

knowledge created by a unique combination of characteristics". TM needs to gen-

eralize this definition slightly. Here, a concept is a unit of knowledge which is re-

ferred to by a term and which is defined by textual description. Thus, a concept is

a term with a meaning that reflects a part of reality or an idea, but concepts do not

necessarily refer to characteristics.

Simply said, any term that has got a definition or explanation is considered as

concept in TM. There are no formal criteria to measure the quality of the definition

or explanation. Thus, it depends on the TM developer, how good a terminology

model finally is.

As mentioned in the previous chapters, concepts applying to objects may appear

as individual or general concepts. TM mainly considers general concepts, alt-

hough the terminology model itself may refer to an individual object (e.g. when de-

fining the terminology model for a specific enterprise).

 - 23 -

3.2 Feature categories

Many concepts refer to subordinated concepts (e.g. via concept relations). Subor-

dinated concepts, that belong to exactly one concept (parent or owner) are called

feature. Features may appear as directly subordinated concepts (e.g. characteris-

tics) or as concept relation referring to other concepts.

When a feature refers to another

concept, the feature still belongs to

its owner, but not the referenced

concept. E.g. a constraint hat refers

to a rule belongs to its owning con-

cept, but not the rule referenced.

Features, that define concept rela-

tions, are also called feature rela-

tions. A feature relation is a con-

cept relation that refers to a feature defined as feature of another concept. Usually,

feature relations do not contain subordinated features, but the relation to exactly

one other feature. There are, however, also features, that define a feature relation

by referring to the feature of another concept and providing own features. Thus,

TM does not strictly distinguish between feature and feature relation, but refers to

feature and feature relation in order to refer to the owner or relation aspect of a

feature.

The feature relation is a concept describing the use of a defined feature within an-

other feature, while subordinated features are part of its parent feature. E.g. the

validation rule (constraint) for the salary property of an employee (feature relation)

refers to a rule (feature) defined for object type employee (checks, whether an

employee does not earn more than his boss). The rule is defined as feature of the

object type employee but it is referenced from the property salary as constraint

(feature relation). Thus, the feature relation defines the role the referenced feature

plays in a specific environment.

Defining the details of a concept by means of features allows expressing detailed

knowledge not only about a subject area, but also about object types, properties

and object collections.

Features may get subordinated features, again. Thus, features may form a hierar-

chy. The meaning of the term referring to a feature is uniquely defined within the

owning feature, only.

Since features define the meaning of a term in the context of another feature, the

same term might be assigned to features owned by another feature (e.g. proper-

ties assigned to different object types may use the same name with different

- 24 -

meaning, as size property for person and company). Thus, the meaning of a fea-

ture, i.e. it's concept definition, may differ depending on the owning feature.

In a terminology model, each concept is defined at least in the context of the indi-

vidual or general object, which provides the frame for the terminology model.

Hence, instead of defining concepts, TM defines features and feature hierarchies.

In order to simplify the terminology model, features levels are assigned to fea-

tures. Level 1 features allow defining a simple terminology model and include ob-

ject types, classifications and properties. Level 2 features describe an enhanced

terminology model that also includes rules, causalities and keys.

In [1087], features are not supported as such. There, object relations and charac-

teristics are defined as details of a concept, but those are not considered as sub-

ordinated concepts. In [ODMG], properties and behavior (what objects of a class

are able to do) are considered as features for object types, as well as extents de-

fining object collections or keys. In addition, TM supports a number of feature cat-

egories, which play an important role when expressing knowledge.

 Item

 Rule

 Event

 Causality

Items summarize a number of more specific features. Rule, event and causality

are features defined for items as well as constraints.

Exceptions are defined as features in [ODMG], too, in order to describe, how ob-
jects of a given type behave in unexpected situations. Since exceptions seem to
be rather an implementation issue than a conceptual one, exceptions are not con-
sidered as part of TM.

Relational data modeling [ERM] does not consider items and defines a number of
tables without defining the higher item. E.g. invoices could be such a table, which
does not at all mean all the invoices in the universe, but the invoices for the com-
pany, only, which deals with those invoices.

Indeed, the invoices are a feature of a company in this case. Most data models try
to model “global” data sets ignoring the parent item, which is not a big problem,
since the application works within the implicitly defined item, only.

 - 25 -

3.2.1 Rules

Object types and properties support a static definition of objects and object clas-

ses. An advanced knowledge approach, however, is to describe, how objects be-

have. Typically, the behavior of objects is described as common behavior of ob-

jects of a given object type ("birds are able to fly" or "things are able to fall").

One typical approach is describing behavior as rules. A rule is a feature that de-

scribes how object or property instances change from one state to the other or

how objects interact with other objects. Rules are referred to for different purposes

(rule categories):

 Constraints are used as validation rules for objects and properties

 State transitions describe the way how objects change

 Operations provide derived information

Defining rules is an advanced approach and not typically used when starting defin-

ing concepts. Later on, it becomes, however, important, because building applica-

tions is impossible without knowing the rules, according to which objects in the

application behave and interact with each other.

Typically, rules apply on single values, object instances or object collections. In

order to control rules, any number of parameters (properties) might be passed to a

rule. Depending on the rule category, it may change the state of the instance it

applies on or return a result property. Parameters and result are features of the

rule.

- 26 -

3.2.2 Events

An event describes a cause or reason, which may activate an action (rule). There

is a difference between individual and general events. An individual event is

something that had really happened, while a general event is an event that may

happen. Within the terminology model, mainly general events are considered.

Usually, general events are referenced from within causalities. The same general

event might be referred to from within different causalities, in which case all relat-

ed actions are called, when an individual event happens.

General events are features describing relevant state transitions. Depending on

different categories of state transitions, three categories of events may be defined:

 Instance events - are defined as relevant instance state transitions that
may cause a reaction (activating a rule), e.g. when a person has married
(cause) this has to be registered (action).

 Time events - are defined as relevant time state transitions (e.g. a per-
son's birthday) that require appropriate actions (as sending a mail). This
does not differ in principle from object state transitions, but time plays a
special role and thus, it becomes useful to consider time-dependent reac-
tions separately.

 Process events - are events defined by a process (e.g. the database sys-
tem or GUI frame work). Process events reflect process states rather than
instance states. Typical process events are events as an instance has
been updated, created or deleted.

Instance and time events are those, which are typically defined by subject area

experts in the terminology model. Process events are a more technical issue and

are, usually, considered by IT experts.

Event feature relations may refer to rules as pre- and post-condition, which is one

way of defining relevant state transitions [UDT]. In this case, an event happens,

when both, pre- and post-condition become true.

 - 27 -

3.2.3 Causality

Causality is a feature that describes an event

(cause or reason), which activates an action

(rule), i.e. a reaction describes the relationship

between event and action. Causalities can be

described best by subject matter experts and

are an important part of the terminology model

(only experts know, what will happen on the

stock market, when a government changes).

- 28 -

3.3 Item

Considering data as a container containing information of any complexity (elemen-

tary value, instance, collection or classified collection), corresponding data con-

cepts can be described on different levels:

 Elementary type

 Property

 Object type

 Classification, aggregation types

All four categories describe object related concepts or schemata for data states.

There is no common designation known that describes the generalization of object

related concepts. Here, it will be called item.

An item is a feature that defines common features for object related concepts as

behavior and causalities. In general, each object related concept may define be-

havior and causalities for the object defined by the item.

An individual item is the reflection of an individual object property or object col-

lection. Individual items are defined in detail in [UDT]. A general item (or item)

describes the conceptual view to data and appears as property, elementary and

object type or aggregation type.

Each item consists of a number of features, which describe the details of the item.

The item defines what a concept has, how it behaves and how it reacts. The con-

cept of an item is provided as textual definition that defines what the item is about,

it's meaning.

Different categories of

items have been discov-

ered so far and are sup-

ported in TM. Items are not

defined as such, but as

type, property or classifica-

tion.

Since object or object

views the item refers to,

are always defined in a higher context, each item has a parent item. Indeed, there

are no items existing outside any context, i.e. each item (except perhaps the top-

most, e.g. the universe) has a parent (item) describing the context in which the

item and its features are defined.

Rules

 - 29 -

Rules defined for an item describe the way an object, object collection or part of

an object behaves. Mainly, rules are defined in order to derive information from

other properties, in order to react on different events or for defining specific behav-

ior of related objects. Rules are often referred to by feature relations, e.g. in cau-

salities (reactions) or constraints.

Constraints

Constraints allow defining sort of validation rules for instances (object, property,

collection), e.g. the birth date of a person must not be greater than the current

date or persons younger than 18 years cannot be married.

Events

Events mainly refer to process events but also to state transition events [UDT]

caused by state transitions of one or more item instances. Events might also be

defined in combination with time events.

Causalities

Causalities (reactions) describe the way an item reacts on specific events. Typical-

ly, items react on process events as inserting or removing an object instance

(parts, associations) or updating a property value (characteristics). When an event

has been recognized, the action referred to by the reaction will be called. Actions

are is described as rule.

- 30 -

3.3.1 Type

A type is an item, which includes object types as specialization. Types are refer-

enced by properties in order to define the way, property instances are provided.

Types are also referenced (as

object types) by classifications

and categories.

Types do not support special

features or feature relations,

which are defined for special-

ized types as object type and

classification.

As an item, the type supports

defining behavior and reac-

tions of the general object as rules, events and causalities. These are typical fea-

tures for object types, but also elementary types and classifications may define

specific behavior.

3.3.1.1 Elementary types

Elementary types are types that do not have properties or categories, e.g. types,

which are considered as "known" by everybody or as kind of atomic. Typical ele-

mentary data types in a terminology model are text or number, which are consid-

ered as atomic from a conceptual point of view.

Elementary types usually define certain kind of behavior, which is usually nor ex-

plicitly defined but expected to follow common and well-known rules defined for

the elementary type (e.g. numerical operations for numbers). Similar, in some

cases kind of default causalities are implicitly defined (e.g. exception as reaction

on zero division).

It is a matter of view, what is considered as elementary type. In the "Terminology

Model Reference" several elementary types are listed.

3.3.1.2 Object types

An object type is a type that defines the intensional aspect of a single or a set of

individual objects, i.e. the properties an object type consists of and other common

 - 31 -

features of individual objects belonging to the object type. Object type definitions

provide an intensional view to individual objects.

Since an object type usually refers to

common features for a set of objects,

object type definitions reflect a specific

interest or a specific view to objects in

the collection, i.e. the object type de-

scribes the properties and features of

object instances as specific view to ob-

jects of the given type..

Besides properties, the object type def-

inition may include other relevant features as rules, subtypes, classifications etc.,

which are listed below.

Object types support a number of features, which provide a detailed object type

definition. Most object type features are optional. The only mandatory feature re-

quired for each object type is at least one property (which might be a generaliza-

tion).

Most important features are data model relevant features as

 Properties

 Keys

 Extensions

Behavioral features are described as rules, which might be referenced as con-

straint, condition or action.

Several features describe causalities:

 Events

 Causalities

Some models consider generalization as feature relation for object types. Here,

generalization is considered as property.

Properties

Object type properties define the properties of an object type, i.e. the properties, which de-

fine the specific view to an object by creating an object instance as an image of reality.

Properties are available for each object instance of the given object type and determine the

object instance state [UDT]. Object type properties are usually defined as generalizations,

characteristics, parts or associations, which provide more specific property definitions.

Since properties defined in generalizations are inherited from the object type, those need

not to be redefined in each specialization. Properties except generalizations might be rede-

fined (specialized) in specialized object types.

Fixed characteristics

- 32 -

Fixed characteristics are characteristics with an assigned value (women are per-

sons with a fixed characteristic sex, which is female for all women). Fixed charac-

teristics a characteristic defined in on of the generalizations of the object type.

When a specialized object type is defined by the value of a classification attribute,

the fixed characteristic has to be defined as property of the object type. Fixed

characteristics have to refer to classifying characteristics of one of the generaliza-

tions.

Keys

Keys are projections of properties (usually characteristics) from the defined object type.

Keys are defined in order to identify object instances or in order to give more weight to a

number of attributes.

Classifications

In order to define a typed classification, i.e. a classification that may apply on ob-

jects of a given type, only, the classification may be defined as object type feature,

rather than as terminology model feature, which provides more global classifica-

tions.

Extensions

Extensions describe object instance collections. Actually, extensions are proper-

ties of a higher context (terminology module the object type is defined in) and

should be defined as properties there.

It is a matter of viewpoint, whether extensions are considered as feature of the ob-

ject type or as object type property in a higher context. On one side, it seems, that

discussing the concept of an object type (e.g. invoice), extensions seem to belong

to the definition of the object type. On the other hand, one could argue, that collec-

tions always require a specific context (e.g. an enterprise), for which the collection

is of relevance.

For practical reasons, the terminology model also allows defining extensions as

object type feature. Thus, one might define paid and unpaid invoices as feature of

the object type invoice, as well as an object collection containing all invoices.

Local object types

Within the context of an object type, local object types might be defined, which are

known within the context of the object type, only. Features defined for the object

type, only, should reference local object types. Object types referred to by other

features of other object types must not be defined as local object types.

It makes a big difference, whether a property (e.g. address) or a local object type

(address) has been defined. A local object type never carries data but requires at

least one feature (property), referring to it.

 - 33 -

This is an enhanced feature, which looks a bit technical. In fact, there are situa-
tions, where this becomes very useful in sense of terminology, e.g. when defining
different object types for address instances in person and enterprise object types.
Alternatively, one could, of course, create object types company address and per-
son address in the terminology model, but this may conflict with the way, language
is used in the subject area.

Feature inheritance

When an object type contains generalization properties, it will inherit all features

from its generalizations. Features might be overloaded by redefining a feature with

the same name and different meaning.

Properties, reactions, constraints and behavior might be redefined for specialized

features. Redefining a feature means that the new feature replaces the feature de-

fined with the same name for the generalization without changing the feature cat-

egory.

Property specialization is a typical way in human language for expressing slight
modifications for properties and behavior in specialized object types. Most tech-
nical environments do, however, not yet support property specialization.

- 34 -

3.3.1.2.1 Terminology model

A terminology model is an object type that describes a complex subject area,

which relates to an individual or general object. When the subject area is complex,

it is usually divided into sub areas, which are reflect-

ed as subordinated terminology models. In contrast to

other object types, terminology models define a con-

cept system.

A concept system as being defined in [1087] is a "set

of concepts structured according to the relations

among them". This corresponds very much to termi-

nology models in TM. A concept system describes

concepts used in the specific subject area. Explicitly defining a concept system

might be a good starting point for defining a terminology model, but it is to general

in order to reflect important principles of expressing knowledge in human lan-

guage. Thus, the concept system has to be upgraded later on to a terminology

model.

A terminology model also defines the object type to which the knowledge area to

be described, belongs. This might be either an individual object (as a specific en-

terprise) or a general object (enterprises as such, represented by a specific view

to enterprises). Thus, the terminology model for an accounting system for an indi-

vidual company will describe the company as in individual object. Providing a ge-

neric solution, which might be used by any company, the application describes the

general object company from the view of accounting processes.

In contrast to object instances, which are defined by an object type with well-

defined features, model features are more flexible and may easily change depend-

ing on specific requirements. Practically, creating a new object collection means

adding a new property to the model instance, but this is not considered as signifi-

cant model modification, which e.g. required database reorganization.

Each terminology model should be consistent in a way that it does not refer to

types, which are not defined in the terminology model itself or one of its parents.

In [ERM] the entry points are tables, which are features in the context of a project
or database. The project or database does exist, but is not defined as upper con-
text. Similar, in the object model [ODMG], where technically different contexts are
provided in terms of schema, module, namespace and type, the conceptual entry
points are types and extents (properties).

3.3.1.3 Keys

 - 35 -

A key is an object type defined in the context of an object type. A key consists of a

subset of properties defined for the object type owning the key. Thus, a key also

defines a projection rule for object instances of the object type. A key consists of

one or more key components (properties). A key compo-

nent is a feature relation that refers to a property defined in

the object type that owns the key. A key may consist of any

number of key components, but requires at least one.

At the first glance, keys seem to be an implementation is-

sue, but this is not always case. Since keys are used for

identifying object instances or ordering object instances in an object collection,

keys have got a conceptual meaning, too.

3.3.1.4 Classifications

A classification is a type that describes a method, which divides a set of objects

completely into distinct subsets by means of categories. Hierarchical classification

might be defined by defining sub

categories for each category etc.

Well-formed classifications do

have the same nesting level for

each category.

When a classification refers to a

type or is being defined in the

context of an object type, the

classification is called typed

classification. Typed classifications can apply on objects of the type associated

with the classification, only.

Classifications defined as feature of a type are considered automatically as typed

classifications.

Classifications are referenced as type for characteristics (properties) in order to

define classifying characteristics. By assigning categories to individual object, ob-

jects are associated with this category.

In order to assign additional properties to categories of the classification, the clas-

sification may define to a number of properties (characteristics).

There is a limited support in [1087] for categories by the concept 'type of charac-

teristic'. [ODMG] supports simple classifications as enumeration. [ERM] does not

support classifications, but those might be implemented as tables and table rela-

tions. [UML] supports classifications as enumerations. [UDT] considers classifica-

tions as one way for providing a P3 database schema.

- 36 -

Categories

A classification supports a list of categories. The set of categories is supposed to

divide a given object collection completely into distinct subsets.

Properties

A classification may define a number of properties (characteristics) for it's catego-

ries. Each property defined for the classification becomes a value in the subordi-

nated categories.

Object type

Classifications may refer to an object type, which describes the kind of objects the

classification may apply on.

 - 37 -

3.3.1.4.1 Category

A category is a concept (classification) that defines a generic subset for an object

collection of a given type. The category defines the extension (borderlines) for the

subset and/or a constraint.

In general, categories are classifications,

i.e. a category may consists of a number

of sub categories, which allow further di-

vision of object collections. When the cat-

category's classification refers to a type

(typed category), it may define an object

collection containing a set of specialized

object instances.

In order to put objects into a category, category values may be assigned to classi-

fying characteristic (e.g. assigning the category male to the person characteristic

gender). Alternatively, rules might be referenced that define conditions for assign-

ing individual objects to a certain category.

Object type and properties of the category's classification are inherited from its

parent classification. When the category refers to another object type then the

parent classification, the category's object type must inherit from the parent's clas-

sification object type.

Properties are inherited from the upper classification and may be extended by ad-

ditional properties for sub categories. Thus, each category supports all properties,

which have been defined in the classification hierarchy.

Categories are defined in [1087] 'type of characteristic'. [ODMG] supports catego-

ries as enumerators. [ERM] does not support categories on model level. [UML] al-

lows defining categories as enumeration literal.

Extension

The extension describes the object set, which is defined by the category. There

are many different ways for defining the extension, but typically, it is defined by

describing borderlines. E.g. persons, that earn between 2000 and 3000 EURO per

month.

3.3.1.5 Aggregation types

An aggregation type is an object type, which inherits from a classification. In order

to provide aggregated values when being applied on a collection, the aggregation

- 38 -

type defines one or more (aggregation) properties (attributes). Aggregation types

may inherit from typed classifications, only.

Aggregation properties usually contain aggregated data when applying on an indi-

vidual object collection containing objects of the classifications object type. Aggre-

gation properties define the aggregation rule (derivation rule) as method of the

classification's object type.

Each instance of an aggregation type is identified by its category.

 - 39 -

3.3.2 Property

A property is an item that defines the extensional aspect of a general object col-

lection (e.g. everything that costs money or persons that have been in a movie at

a certain time, but also the names of a per-

son). Potentially, properties define object

collections even though, in many cases,

those collections consist of exactly one val-

ue (e.g. person's birth date). A property is

related to a value (property instance), which

is part of an object instance reflecting an in-

dividual object. Properties may refer to sin-

gle or complex values as well as to collec-

tions of object instances. A property instance is a value reflecting the property for

an individual object, the value of the property in a related object instance [UDT].

A property may define a collection of object instances of a given type and with a

specific role (e.g. children of a person). By means of property definitions,

knowledge about groups of objects can be expressed in different ways. Thus,

property definitions mainly express the extensional aspect of a general object in a

specific context (object type). The intensional aspect is expressed by means of an

object type the property refers to, which is the object type for all object instances in

the collection.

Properties can be defined as features of an object type, and thus also as features

of a terminology model. Properties always are defined as features of an object

type, i.e. property instances are part of an upper object instance, which represents

the state of an individual object.

Considering tables in the relational model [ERM] or extents in the object model

[ODMG], which are properties in the sense of the definition above, it seems that

properties may exist also independent on a higher context. However, the context

for those properties usually exists as individual object, but it might not be reflected

as such in data modeling.

Thus, a property is a feature, which describes an abstract object collection in a

higher context (object type, terminology model). Object collections defined by

means of properties may refer to single objects but also to groups of objects. Also

characteristics as name or first name of a person are also considered as object

collections with one element.

A property refers to an object type (feature relation) of the elements, which might

be stored in the property instance. In order to be consistent, types referred to by

- 40 -

the properties must be elementary (integer, text etc.) or have to be defined within

the terminology model, too.

Type relation

An important feature of the property is the type relation. Each property refers to a

type, which might be an elementary type as text or number, an object type defined

in the terminology model or a classification (enumerations).

Keys

In order to support object rating, unique constraints or for any other conceptual

reason, the property may refer to a number of keys defined for the object type re-

ferred to by the property. Typically, keys are used in connection with collection

properties.

Derivation rule

Properties may present the state of an object instance, but also refer to derived in-

formation. In order to define derived properties, an operation rule might be refer-

enced, which defines, how the derived information has to be evaluated. It does not

make sense storing e.g. the age of a person, but rather the birth date. Since age

might be a property of conceptual interest, age could be defined as derived prop-

erty calculated from the current date and the birth date.

Derived properties might be even more complex and may define derived views to

objects or even create derived object instances or collections.

Practically, derivation rules might be defined directly instead of referring to a
named rule. Only, when the rule becomes very complex or is rather common, an
explicitly defined rule will be referenced, instead.

Set relations

Typically, set relations for object type properties are described as supersets by re-

ferring to other properties. Properties referenced as superset might refer to proper-

ties defined in the higher context (parent item), to properties of the same or a re-

lated instance (local supersets).

In principle, set relations might become more complex and may describe complex

set hierarchies. This is, however, not very typical for object type properties.

3.3.2.1 Property roles

Within a terminology model, properties my play different roles:

 Object type properties - Properties for known for each object instance of a
given object type

 Fixed characteristics - Properties, which fixed values in specialized object
types

 - 41 -

 Optional properties - Properties, which might be associated with any ob-
ject type

Object type properties and fixed characteristics are defined as properties of object

types. Optional properties are defined as properties of a terminology model.

Object type properties

Object type properties describe a static view to an object, i.e. they describe rele-

vant information to be provided for an object instance of the given object type (e.g.

name, given names, birth date for object type person). Each object instance of a

given object type provides property instances for the defined properties.

Fixed characteristics

When one or more generalizations have been defined for an object type, fixed

characteristics are a mean for defining specialized object types. E.g. the object

type woman with a generalization person may define a fixed characteristics sex,

which gets the value female for all object instances of object type woman. In this

case, the fixed characteristics sex for woman will redefine the characteristics sex

as being defined for object type person.

Optional properties

Optional properties are properties defined in the context of a terminology model,

which may be associated with any object type defined in the terminology model

and its subsequent models. Optional properties may be added to any type of ob-

ject instance, but need not. Typical optional properties are remarks or notes, which

do not really belong to any specific object type.

3.3.2.2 Property categories

The terminology model has chosen a subset of property categories defined in

[1087] and [UML]. There are many other property categories that could be defined,

and which might be supported by category names. For matching data modeling

approaches, the following categories define specialized property types.

 Generalization is a property, that defines a more general object type

 Characteristic (attribute) is a property, that describes an elementary value

 Part or partitive relation (composite aggregation) is a property that defines
an owning object relation, i.e. an owner-part relation

 Association is a property that describes an object relation

The way of classifying properties differs between [ERM], [ODMG], [UML] and

[1087]. The terms used for property categories are taken from [1087] (and [UML]).

- 42 -

3.3.2.2.1 Generalization

A generalization is a property that defines a more general object type, from which

the current object type inherits all features, i.e. features of all generalizations of an

object type are considered as features of the object type itself. Generalizations al-

ways contain exactly one element in the properties object collection. The value of

a generalization is the value of the generalized object instance.

Thus, on the level of object instances, generalizations describe specific sort of re-

lationship to a more general object view. Object instances of several views may

inherit from the same object instance (two employments for a person result in two

employee instances, which both inherit from the same person instance).

In fact, generalizations have got an extensional aspect and may refer to supersets

containing the object instances referred to as generalization instances, i.e. gener-

alization instances are not necessarily part of the specialized instance. Since the

object type defined for a generalization refers to a different object view, generali-

zations in general define separate object instances.

In [1087] generalizations are defined as generic object relations. [ODMG] supports

generalizations but not as properties. [ERM] does not support generalizations at

all.

 - 43 -

3.3.2.2.2 Characteristic

A characteristic is an object type property that refers to an elementary type

(number, text date, time etc.) or classification. Characteristics may refer to single

or multiple elements (e.g. given names). Supersets for attributes might be defined

as value domains, which may refer to another property or to a classification.

Characteristics can be divided into several subcategories depending on the pur-

pose of the characteristic:

 Identifying characteristic - are used for identifying instances of an object
type in an object collection

 Classifying characteristic - allow classifying an object instance according
to the classification or superset the characteristic is based on

 Quantifying characteristic - provide quantities as object characteristic

 Aggregation characteristic – contains aggregated data for an aggregation
type

 Description characteristic - provide textual information for an individual ob-
ject

The concept of characteristics restricts characteristic instances to elementary val-

ues. Data modeling also supports complex attributes [ODMG], which are concep-

tually considered as parts. The way of implementing complex attributes is, howev-

er, not of interest for the terminology model.

When a characteristic refers to a classification as type, the classification defines

the value domain (set of permissible values) for the characteristic.

- 44 -

3.3.2.2.3 Parts

A part is a property that defines a partitive or owning relation to one or more ob-

ject instances of a given object type. In [1087] parts are referenced as partitive

concept relations. The object model [ODMG] considers part-of relations as rela-

tionships or complex attributes.[UML] supports partitive relations as composite ag-

gregations. [ERM] defines partitive relations as table relations but not as instance

relations.

Technically, it is not possible to draw a clear borderline between partitive and as-

sociative concept relations or characteristics. Conceptually, it makes a big differ-

ence, whether parts of an object instance are considered to be dependent on or

owned by the referencing instance or not. It depends, however, on the specific

view, whether one considers e.g. wheels as part of a car or as association be-

tween car and wheels.

Technically, part properties might be implemented as parts, complex attributes or

as relationships, depending on the features supported by the target system.

 - 45 -

3.3.2.2.4 Associations

An association is a property that describes an object relation to other objects. In

[1087] associations are defined as associative object relations. [UML] defines as-

sociations as associations. The object model [ODMG] considers associations as

relationships. [ERM] defines associations as table relations but not as instance re-

lations.

Similar to attributes, defining supersets for a singular or multiple associations al-

lows defining ad hoc classifications for associations.

- 46 -

4 Terminology Model Reference

This reference manual provides object type defined for the terminology model
(TM). The alphabetical object type list defines the details for all object types dis-
cussed in the previous chapters.

 - 47 -

4.1 Terminology model rules

TM The document provides a detailed documentation of the
terminology model. Two chapters provide object type
and classification definitions.

The terminology model is based on definitions in
„Terminology Model II“, the terminology standard ISO
1087 and common requirements on object databases
(The object Data Standard: ODMG 3.0) and UML (OMG
Unified Modeling Language™).

Structure For each terminology model or module included in the
documentation a separate chapter has been provided.
This chapter contains object type definitions in the first
part and classification definitions in the second part.

Object types Object types are described as shown below:

 Name - Title
Conceptual definition of the object type …

Generalizations

G-Name

Title
Definition for generalization
 Object Type

 …

Characteristics

C-Name

Title
Detailed definition for characteristic
 Type

 …

Parts

P-Name

Title
Detailed definition for partitive relation (part of)
 Object Type

 …

Associations

A-Name

Title
Detailed definition for association
 Object Type

 …

http://www..odaba.com/content/downloads/documentation/P2_TerminologyModel_v2.pdf

- 48 -

Module/model For terminology modules and models properties (ex-
tents) defined on this level will be listed. When optional
properties have been defined, a list of optional properties
will be included.

 Name - Title
Conceptual definition of the terminology model or module …

Extents

E-Name

Title
Definition for extent
 Object Type

 …

Optional properties

O-Name

Title
Detailed definition for optional property
 Type

 …

Classifications Classifications are described as shown below:

 Name - Title
Conceptual definition of classification …

Categories

C-Name

Title
Definition for category (type for typed categories, only)
 [Object type]

 …

Rules and reac-
tions

Rules and reactions are not generated into the docu-
ment. In order to show rule and/or reaction and event
definitions, the document template TerminologyMod-
el.dot has to be updated.

Notes Notes are displayed with this yellow background. Notes
should be considered as sort of comment or further ex-
planation and are not considered as relevant part of the
document.

Examples
Examples are presented as shown here. Examples provide
more explanation for the defined concept.

 - 49 -

4.2 From Terminology Model to Database

The goal of building a terminology model are detailed definitions for a subject field,
but also a base for building a data model based on the terminology model. Accord-
ing to our experience, subject matter experts are satisfied with terminology model
definitions, since the method requires clear and detailed definitions and it reflects
the role of related concepts in different scopes (class concepts).

Moreover, IT technicians benefit from terminology models, since the terminology
model provides a structure that can be easily transformed into a data model or da-
tabase schema.

One of the important ideas for using a terminology model as base for a data model
is, that users can use designations defined in the terminology model for accessing
data in the data base or in an application. Unfortunately, databases usually do not
accept names used in the terminology as class or property names in the database.
When the database is not able to handle conceptual names, a semantic interface
has to be provided that does the mapping between technical and conceptual
names.

Creating an object model
from the terminology
model is not a big prob-
lem and requires formal
changes as removing or
replacing spaces in
names. Thus, one may
easily create an UML def-
inition from the terminolo-
gy model and use this for
further processing.

Terminology-oriented sys-
tems (e.g. ODABA) allow

directly generating data models from a terminology model. Moreover, one may
create documents, UML presentations, application assistance (online help) and
other formats from the terminology model created.

Terminology
Model

XML

Database

UML

Office doc-
uments

- 50 -

4.3 Terminology Model Object Types

The model definition documents details of the terminology model. The model con-
tains all conceptual relevant object types and characteristics, but no implementa-

tion specific defini-
tions. In order to
implement a termi-
nology model, sev-
eral extensions
might become nec-
essary.

The goal of a ter-
minology model is
knowledge presen-
tation. The termi-
nology model co-
vers the knowledge
aspects discussed

in “Terminology Model Overview“ and tries to present those in a structured way.
The terminology model tries to refer as much as possible to available standards,
but for providing a structured knowledge presentation, it needs further extensions.

Those aspects are important for improving definitions but also for matching IT re-
quirements.

The terminology model may be divided in different parts, which refer to different
phases when developing a terminology model. Each part may be described on dif-
ferent levels (core level and extended level). Static terminology models describing
the core level may solve about 90% of the requirements. Extended terminology
models for defining behavior and causalities are more difficult, but provide a more
sophisticated conceptual description of a subject area.

Static terminology model

The static terminology model mainly describes object type/property/object type re-
lations. A relevant concept of an expert area is considered as object type, which
has properties. Properties refer to types again, which have to be described by its
properties etc. Such static models are typically the starting point in creating a ter-
minology model.

Even though this is a very simple definition of the world, the static terminology
provides a good conceptual definition of many relevant concepts on the one hand,
and the base for generating database models and other technical information on
the other hand.

A small extension of the static terminology model includes classification s, which
are often necessary for defining categories of object classes defined in the model.

 - 51 -

The properties in the model should be described according to its categories, since
it makes a relevant difference, whether a company is a person or has person. In
the case a company is a person the company inherits all the properties that are
defined for the person.

For simplification, the static terminology model does not differ between categories
and applied categories. Usually, on the level of knowledge representation, catego-
ries and applied categories are identical. Still, it is possible to describe applied
categories separately, when it becomes necessary, i.e. when a classification can
apply on object sets of different types.

Behavioral terminology model

The behavioral terminology model becomes necessary, when going to develop an
application. Nevertheless, the behavioral aspect is a conceptual aspect which is
known mainly by the experts. Thus, the terminology model provides the behavioral
part for describing behavior of objects of a given class. The semantics follow the
common rules, i.e. more special object types (concepts) inherit the behavior from
more general object types (concepts).

Since rules or behavior may generate an output (result), rules might be linked with
an object type, which defines the output. Behavior or rules are usually defined for
objects belonging to a specific object type. The terminology model allows describ-
ing affected objects (side effects) of a behavior, but there is no explicit support for
describing cooperative behavior, i.e. behavior with more than one object as actor.
Defining composite object types or parameters, which may influence the behavior,
may solve this problem.

Dynamic terminology model

 The dynamic terminology model describes causalities by means of events and ac-
tions. Causalities are described as complex state transitions or time (cause or
event) and a reaction (behavior or rule), which is the consequence of the event.

Even though, causalities are often not supported be implementation tools, they
describe rather complex mechanisms for a subject area.

Special causalities are those, which are based on system events, i.e. events fired
by the database system e.g. when an object or property instance has been updat-
ed. System causalities are widely supported and can be implemented close to def-
initions in the dynamic terminology model.

- 52 -

4.3.1 AggregationType - Aggregation type

An aggregation type is an object type, which inherits from a classification. In order
to provide aggregated values when being applied on a collection, the aggregation
type defines one or more (aggregation) properties (attributes). Aggregation types
may inherit from typed classifications, only.

Aggregation properties usually contain aggregated data when applying on an indi-
vidual object collection containing objects of the classifications object type. Aggre-
gation properties define the aggregation rule (derivation rule) as method of the
classification's object type.

Each instance of an aggregation type is identified by its category.

Generalizations

ObjectType Object type

The object type the aggregation inherits from allows de-
fining any number of properties. Aggregation types have
to inherit from exactly one typed classification.

 ObjectType

 - 53 -

4.3.2 Association - Associations

An association is a property that describes an object relation to other objects. In
[1087] associations are defined as associative object relations. [UML] defines as-
sociations as associations. The object model [ODMG] considers associations as
relationships. [ERM] defines associations as table relations but not as instance re-
lations.

Similar to attributes, defining supersets for a singular or multiple associations al-
lows defining ad hoc classifications for associations.

Generalizations

Property Property

An association is a property and inherits common fea-
tures from the Property type.
 Property

Associations

inverse Inverse association

The inverse association is the counterpart association in
the related object instance. When a car has got an own-
er (person association), the person might get an asso-
ciation cars for the cars the person owns. In this case,
cars is the inverse association for owner.
 Association

- 54 -

4.3.3 Category - Category

A category is a concept (classification) that defines a generic subset for an object

collection of a given type. The category defines the extension (borderlines) for the

subset and/or a constraint.

In general, categories are classifications,

i.e. a category may consists of a number

of sub categories, which allow further di-

vision of object collections. When the

category's classification refers to a type

(typed category), it may define an object

collection containing a set of specialized object instances.

In order to put objects into a category, category values may be assigned to classi-

fying characteristic (e.g. assigning the category male to the person characteristic

gender). Alternatively, rules might be referenced that define conditions for assign-

ing individual objects to a certain category.

Object type and properties of the category's classification are inherited from its

parent classification. When the category refers to another object type then the

parent classification, the category's object type must inherit from the parent's clas-

sification object type.

Properties are inherited from the upper classification and may be extended by ad-

ditional properties for sub categories. Thus, each category supports all properties,

which have been defined in the classification hierarchy.

Categories are defined in [1087] 'type of characteristic'. [ODMG] supports catego-

ries as enumerators. [ERM] does not support categories on model level. [UML] al-

lows defining categories as enumeration literal.

Extension

The extension describes the object set, which is defined by the category. There

are many different ways for defining the extension, but typically, it is defined by

describing borderlines. E.g. persons, that earn between 2000 and 3000 EURO per

month.

 - 55 -

Generalizations

Classification Classification

A category is a classification feature inheriting all feature
properties. Potentially, each category is a classification,
too, which supports further subdivision for a category
collection. Classification categories are, often, not explic-
itly named, but defined just by listing the sub categories
for a category (hierarchical classification). Nevertheless,
categories providing sub categories are, from a concep-
tual viewpoint, classifications.
 Classification

Associations

extension Condition

The extension describes the object set, which is defined
by the category. There are many different ways for defin-
ing the extension, but typically, it is defined by describing
borderlines, e.g. persons, that earn between 2000 and
3000 Euro per month.

Extensions can be defined for applied categories, only.
Often, the extension is defined in terms of conditions,
where the condition is a rule defined in the context of the
classification's object type. In case of hierarchical classi-
fications, the rule might also be defined in the context of
the object type associated with the parent category.
 Rule

- 56 -

4.3.4 Causality - Causality

Causality is a feature that describes an

event (cause or reason), which activates an

action (rule), i.e. a reaction describes the re-

lationship between event and action. Cau-

salities can be described best by subject

matter experts and are an important part of

the terminology model (only experts know,

what will happen on the stock market, when

a government changes).

Generalizations

Feature Feature

A reaction is a feature and inherits all features from the
Feature type.
 Feature

Associations

action Action

The action defines the way the reaction reacts on an
event. Usually, the action is defined as rule in the con-
text, which defines the reaction.
 Rule

event Event

A reaction refers to an event, which might be described
in terms of pre- and post-conditions or as process event.
Since an event is a set of relevant state transitions, One
event is always sufficient to describe the cause or rea-
son for a reaction.
 Event

 - 57 -

4.3.5 Characteristic - Characteristic

A characteristic is an object type property that refers to an elementary type

(number, text date, time etc.) or classification. Characteristics may refer to single

or multiple elements (e.g. given names). Supersets for attributes might be defined

as value domains, which may refer to another property or to a classification.

Characteristics can be divided into several subcategories depending on the pur-

pose of the characteristic:

 Identifying characteristic - are used for identifying instances of an object
type in an object collection

 Classifying characteristic - allow classifying an object instance according
to the classification or superset the characteristic is based on

 Quantifying characteristic - provide quantities as object characteristic

 Description characteristic - provide textual information for an individual ob-
ject

The concept of characteristics restricts characteristic instances to elementary val-

ues. Data modeling also supports complex attributes [ODMG], which are concep-

tually considered as parts. The way of implementing complex attributes is, howev-

er, not of interest for the terminology model.

When a characteristic refers to a classification as type, the classification defines

the value domain (set of permissible values) for the characteristic.

Generalizations

Property Property

An attribute is a property and inherits common features
from the Property type.
 Property

Characteristics

initial value Initial value

The initial value for an attribute is the value, which is set
when creating an object instance containing the attrib-
ute. When a superset has been defined, the value must
be a valid value in the superset.
 Text

- 58 -

4.3.6 Classification - Classifications

A classification is a type that describes a method, which divides a set of objects

completely into distinct subsets by means of categories. Hierarchical classification

might be defined by defining sub catego-

ries for each category etc. Well-formed

classifications do have the same nesting

level for each category.

When a classification refers to a type or is

being defined in the context of an object

type, the classification is called typed

classification. Typed classifications can

apply on objects of the type associated

with the classification, only.

Classifications defined as feature of a type are considered automatically as typed

classifications.

Classifications are referenced as type for characteristics (properties) in order to

define classifying characteristics. By assigning categories to individual object, ob-

jects are associated with this category.

In order to assign additional properties to categories of the classification, the clas-

sification may define to a number of properties (characteristics).

There is a limited support in [1087] for categories by the concept 'type of charac-

teristic'. [ODMG] supports simple classifications as enumeration. [ERM] does not

support classifications, but those might be implemented as tables and table rela-

tions. [UML] supports classifications as enumerations. [UDT] considers classifica-

tions as one way for providing a P3 database schema.

Categories

A classification supports a list of categories. The set of categories is supposed to
divide a given object collection completely into distinct subsets.

Properties

A classification may define a number of properties (characteristics) for it's catego-
ries. Each property defined for the classification becomes a value in the subordi-
nated categories.

Object type

Classifications may refer to an object type, which describes the kind of objects the
classification may apply on.

 - 59 -

Generalizations

Type Type

A classification is a type that defines the concept of the
classification and its features (categories).
 Type

Parts

characteristics Category characteristics

A classification may define a number of additional char-
acteristics for its categories. E.g. an education classifica-
tion could add the education duration for each education
category. Category characteristics must not refer to ag-
gregated data of individual object collections.

Associations

categories Categories

Categories of a classification divide a set of objects (of
the given object type) completely into distinct subsets.
When the parent category
 Category

object type Object type

The object type describes the kind of object instances,
which might be classified by the classification. The clas-
sification might be used to classify objects of the defined
object type or a specialization of this type. When the
classification allows classifying anything, no object type
needs to be defined.

When a classification is defined as feature of an object
type (local classification), it may refer to a local object
types of the object type. Otherwise, the object type own-
ing the classification is assumed to be the classification's
object type.
 ObjectType

- 60 -

4.3.7 Concept - Concepts and terms

An essential point of transferring knowledge is common understanding and refer-

ring to proper and well-defined terms.

Transferring knowledge, i.e. communication, is based on sequences

of symbols. A symbol is any kind of signal (visual, acoustical etc.)

with an agreed underlying meaning passed between sender(s) and

receiver(s). A term (single word or sequence of words) is a symbol

based on a sequence of letters and numbers. The meaning of a

term is not necessarily unique but it becomes unique in a certain

context. TM only considers terms as mean of expressing

knowledge. Other symbols as pictures or sounds are not considered

in TM.

Different terms may get the same meaning (synonyms). Synonyms

might be defined when being used within a subject area, but also, when terminol-

ogy changes. In the latter case synonyms allow mapping old terms to newer terns.

Terms are used for referring to concepts. [1087} defines a concept as "unit of

knowledge created by a unique combination of characteristics". TM needs to gen-

eralize this definition slightly. Here, a concept is a unit of knowledge which is re-

ferred to by a term and which is defined by textual description. Thus, a concept is

a term with a meaning that reflects a part of reality or an idea, but concepts do not

necessarily refer to characteristics.

Simply said, any term that has got a definition or explanation is considered as

concept in TM. There are no formal criteria to measure the quality of the definition

or explanation. Thus, it depends on the TM developer, how good a terminology

model finally is.

As mentioned in the previous chapters, concepts applying to objects may appear

as individual or general concepts. TM mainly considers general concepts, alt-

hough the terminology model itself may refer to an individual object (e.g. when de-

fining the terminology model for a specific enterprise).

Characteristics

definition Concept definition

A description or definition of the named concept.
 Text

 - 61 -

designation Concept name

The designation is a single word or group of words that
identifies the concept.
 Name

importance Importance of the concept

The importance defines the value of a concept. Typical-
ly, the terminology model distinguishes between problem
relevant and technical concepts.
 ImportanceLevels

Parts

document refer-
ences

Document references

Document references provide links to internal or external
documents containing more information about the con-
cept.
 DocumentReference

example Examples

One or more examples describing the defined concept.
Examples are marked by italic letters.
This is an example for an example.

 Text

provenance Provenance

Contains remarks about the ownership and history of the
concept.
 Text

rationales Rationales

Allows describing the reasons and the motivation for de-
fining the concept.
 Text

source Concept source

Source of the concept when being defined in another
place or area
 Text

- 62 -

synonyms Synonyms for concept

List of synonyms that can be used instead of the concept
name.
 Text

use cases Use cases for the concept

In order to explain the concept more detailed, one or
more use cases should be described.
 Text

 - 63 -

4.3.8 DocumentReference - Document reference

Document references might be defined, when a concept is defined or explained
more detailed in an external source (document or web site).

Characteristics

AUTOIDENT Internal number

Document references get an internal unique number for
having a unique key among all document references.
 Number

author Author or list of authors of the document
 Text

id Reference ID

The reference identification is a unique string, which is
used in other documents to refer to this document, e.g.
run99.1. Usually, document references are displayed in
brackets like [run99.1]. Identifiers are limited to 10 char-
acters. Since documents might be referenced in different
places, reference ids must be unique.

It is suggested to use an acronym for the author, pub-
lishing year (and number, if necessary).
 Text

name Semantic document name

This is a short name or title for the document to be dis-
played, when the document is referenced. The name is
not language dependent.
 Text

path Complete document path

Complete path to the location, where the document is
stored. This can be a local path but also an URL refer-
ring to a location in the WEB.
 Text

publishing date Publishing data
 Text

- 64 -

publishing event Publisher or conference

This includes the name of the publishing company or
conference or event, where the document has been pub-
lished.
Addisson Wessley

Object world

 Text

publishing place Publishing place

This is the place (city, country or state), where the doc-
ument has been published.
Berlin

Germany

 Text

title Document title

The document title is usually the official title, under which
the document has been published.
 Text

type Document type

The document type is required, when the extension in
the document name does not allow determining the doc-
ument type. Usually the type is taken from the document
extension. When defining a document type in this prop-
erty, this is used rather than the document extension.
 Name

Parts

abstract Abstract

Short summary of the document content. This section is
not multilingual and should be provided with the lan-
guage for the document.
 Text

 - 65 -

4.3.9 Event - Events

An event describes a cause or reason, which may activate an action (rule). There

is a difference between individual and general events. An individual event is

something that had really happened, while a general event is an event that may

happen. Within the terminology model, mainly general events are considered.

Usually, general events are referenced from within causalities. The same general

event might be referred to from within different causalities, in which case all relat-

ed actions are called, when an individual event happens.

General events are features describing relevant state transitions. Depending on

different categories of state transitions, three categories of events may be defined:

 Instance events - are defined as relevant instance state transitions that
may cause a reaction (activating a rule), e.g. when a person has married
(cause) this has to be registered (action).

 Time events - are defined as relevant time state transitions (e.g. a per-
son's birthday) that require appropriate actions (as sending a mail). In fact,
this does not differ in principle from object state transitions, but time plays
a special role and thus, it becomes useful to consider time-dependent re-
actions separately.

 Process events - are events defined by a process (e.g. the database sys-
tem or GUI frame work). Process events reflect process states rather than
instance states. Typical process events are events as an instance has
been updated, created or deleted.

Instance and time events are those, which are typically defined by subject area

experts in the terminology model. Process events are a more technical issue and

are, usually, considered by IT experts.

Event feature relations may refer to rules as pre- and post-condition, which is one

way of defining relevant state transitions [UDT]. In this case, an event happens,

when both, pre- and post-condition become true.

Generalizations

Feature Feature

An event is a feature and inherits all features provided
by the Feature type.
 Feature

- 66 -

Characteristics

type Event type

The event type describes the type of the selected event.
 EventType

Associations

post condition Post-condition

State and time events require a post-condition, which re-
fers to a constraint expressed by a rule defined in the
context owning the event.
 Rule

pre condition Pre-condition

State and time events require a pre-condition, which re-
fers to a constraint expressed by a rule defined in the
context owning the event.
 Rule

 - 67 -

4.3.10 Feature - Feature categories

Many concepts refer to subordinated concepts (e.g. via concept relations). Subor-

dinated concepts, that belong to exactly one concept (parent or owner) are called

feature. Features may appear as directly subordinated concepts (e.g. characteris-

tics) or as concept relation referring to other concepts.

When a feature refers to another

concept, the feature still belongs to

its owner, but not the referenced

concept. E.g. a constraint hat re-

fers to a rule belongs to its owning

concept, but not the rule refer-

enced. Features, that define con-

cept relations, are also called fea-

ture relations. A feature relation is

a concept relation that refers to a feature defined as feature of another concept.

Usually, feature relations do not contain subordinated features, but the relation to

exactly one other feature. There are, however, also features, that define a feature

relation by referring to the feature of another concept and providing own features.

Thus, TM does not strictly distinguish between feature and feature relation, but re-

fers to feature and feature relation in order to refer to the owner or relation aspect

of a feature.

The feature relation is a concept describing the use of a defined feature within an-
other feature, while subordinated features are part of its parent feature. E.g. the
validation rule (constraint) for the salary property of an employee (feature relation)
refers to a rule (feature) defined for object type employee (checks, whether an
employee does not earn more than his boss). The rule is defined as feature of the
object type employee but it is referenced from the property salary as constraint
(feature relation). Thus, the feature relation defines the role the referenced feature
plays in a specific environment.

Defining the details of a concept by means of features allows expressing detailed
knowledge not only about a subject area, but also about object types, properties
and object collections.

Features may get subordinated features, again. Thus, features may form a hierar-
chy. The meaning of the term referring to a feature is uniquely defined within the
owning feature, only.

Since features define the meaning of a term in the context of another feature, the
same term might be assigned to features owned by another feature (e.g. proper-
ties assigned to different object types may use the same name with different

- 68 -

meaning, as size property for person and company). Thus, the meaning of a fea-
ture, i.e. its concept definition, may differ depending on the owning feature.

In a terminology model, each concept is defined at least in the context of the indi-
vidual or general object, which provides the frame for the terminology model.
Hence, instead of defining concepts, TM defines features and feature hierarchies.

In order to simplify the terminology model, features levels are assigned to fea-
tures. Level 1 features allow defining a simple terminology model and include ob-
ject types, classifications and properties. Level 2 features describe an enhanced
terminology model that also includes rules, causalities and keys.

In [1087], features are not supported as such. There, object relations and charac-
teristics are defined as details of a concept, but those are not considered as sub-
ordinated concepts. In [ODMG], properties and behavior (what objects of a class
are able to do) are considered as features for object types, as well as extents de-
fining object collections or keys. In addition, TM supports a number of feature cat-
egories, which play an important role when expressing knowledge.

 Item

 Rule

 Event

 Causality

Items summarize a number of more specific features. Rule, event and causality
are features defined for items as well as constraints.

Exceptions are defined as features in [ODMG], too, in order to describe, how ob-
jects of a given type behave in unexpected situations. Since exceptions seem to
be rather an implementation issue than a conceptual one, exceptions are not con-
sidered as part of TM.

Relational data modeling [ERM] does not consider items and defines a number of
tables without defining the higher item. E.g. invoices could be such a table, which
does not at all mean all the invoices in the universe, but the invoices for the com-
pany, only, which deals with those invoices.

Indeed, the invoices are a feature of a company in this case. Most data models try
to model „global“ data sets ignoring the parent item, which is not a big problem,
since the application works within the implicitly defined item, only.

Generalizations

Concept Concept

A feature is a concept, which provides a conceptual def-
inition for the feature.
 Concept

 - 69 -

Characteristics

type Feature type

Features are never defined as such, but appear always
as specialized features. The feature type refers to the
type of the specialized feature.
 FeatureTypes

Parts

features Subordinated features

Subordinated features of a feature describe what a fea-
ture has. Features referenced may have different feature
specializations.
 Feature

Associations

constraints Type constraints

Type constraints are rules that might be defined in order
to draw borderlines for objects of the given type, i.e. for
determining whether an object belongs to the object type
or not.
 Rule

related feature Related feature

A feature relation defines a concept relation that refers to
a feature defined as feature of another concept. Usually,
feature relations do not contain subordinated features,
but the relation to exactly one other feature. There are,
however, also features, that define a feature relation by
referring to the feature of another concept and providing
own features.
 Feature

- 70 -

4.3.11 FixedAttribute - Fixed attributes

A fixed attribute is an attribute, which has an assigned value that cannot be
changed. A typical way of defining subsets (properties) or subtypes (types) is de-
fining one or more fixed attributes. In order to define a subset, any attribute might
be defined as fixed attribute assigning a value to it. Thus, e.g. for the persons
property a subset women could be defined by defining the attribute gender as
fixed with the value female.

When inheriting from one or more generalizations, the specialized type could also
be defined by means of fixed attributes.

Generalizations

Characteristic Characteristic

A fixed attribute is a characteristic with an assigned val-
ue.
 Characteristic

Characteristics

value Fixed value

The fixed value defines the value set for the attribute in
order to define a specialized object type or subset by
means of a category.
 Text

 - 71 -

4.3.12 Generalization - Generalization

A generalization is a property that defines a more general object type, from which
the current object type inherits all features, i.e. features of all generalizations of an
object type are considered as features of the object type itself. Generalizations al-
ways contain exactly one element in the properties object collection. The value of
a generalization is the value of the generalized object instance.

Thus, on the level of object instances, generalizations describe specific sort of re-
lationship to a more general object view. Object instances of several views may
inherit from the same object instance (two employments for a person result in two
employee instances, which both inherit from the same person instance).

In fact, generalizations have got an extensional aspect and may refer to supersets
containing the object instances referred to as generalization instances, i.e. gener-
alization instances are not necessarily part of the specialized instance. Since the
object type defined for a generalization refers to a different object view, generali-
zations in general define separate object instances.

In [1087] generalizations are defined as generic object relations. [ODMG] supports
generalizations but not as properties. [ERM] does not support generalizations at
all.

Generalizations

Association Association

A generalization is an association with a more general
view to a certain object instance. Thus, a generalization
is not only a property, but an association and inherits
important features from the association.
 Association

- 72 -

4.4 Item - Item

Considering data as a container containing information of any complexity (elemen-
tary value, instance, collection or classified collection), corresponding data con-
cepts can be described on different levels:

 Elementary type

 Property

 Object type

 Classification, aggregation types

All four categories describe object related concepts or schemata for data states.
There is no common designation that describes the generalization of object relat-
ed concepts. Here, it will be called item.

An item is a feature that defines common features for object related concepts as
behavior and causalities. In general, each object related concept may define be-
havior and causalities for the object defined by the item.

An individual item is the reflection of an individual object property or object collec-
tion. Individual items are defined in detail in [UDT]. A general item (or item) de-
scribes the conceptual view to data and appears as property, elementary and ob-
ject type or aggregation type.

Each item consists of a number of features, which describe the details of the item.
The item defines what a concept has, how it behaves and how it reacts. The con-
cept of an item is provided as textual definition that defines what the item is about,
it's meaning.

Different categories of
items have been discov-
ered so far and are sup-
ported in TM. Items are not
defined as such, but as
type, property or classifica-
tion.

Since object or object
views the item refers to,

are always defined in a higher context, each item has a parent item. Indeed, there
are no items existing outside any context, i.e. each item (except perhaps the top-
most, e.g. the universe) has a parent (item) describing the context in which the
item and its features are defined.

Rules

Rules defined for an item describe the way an object, object collection or part of
an object behaves. Mainly, rules are defined in order to derive information from
other properties, in order to react on different events or for defining specific behav-

 - 73 -

ior of related objects. Rules are often referred to by feature relations, e.g. in cau-
salities (reactions) or constraints.

Constraints

Constraints allow defining sort of validation rules for instances (object, property,
collection), e.g. the birth date of a person must not be greater than the current
date or persons younger than 18 years cannot be married.

Events

Events mainly refer to process events but also to state transition events [UDT]
caused by state transitions of one or more item instances. Events might also be
defined in combination with time events.

Causalities

Causalities (reactions) describe the way an item reacts on specific events. Typical-
ly, items react on process events as inserting or removing an object instance
(parts, associations) or updating a property value (characteristics). When an event
has been recognized, the action referred to by the reaction will be called. Actions
are is described as rule.

Generalizations

Feature Feature

A state is a feature that inherits common features de-
fined for the Feature object type.
 Feature

Characteristics

type State type

The state type describes the type of general state.
 ContextTypes

Parts

causalities Reactions

Reactions describe the reaction on specific events as
causality, i.e. the action executed as consequence of an
event in the given context. Rules and events the reaction
is referring to have to be defined in the same context,
which also defines the causality, or in one of its generali-
zations, when the reaction is an object type.
 Causality

- 74 -

events Events

Events refer to process events but also to instance
events caused by state transitions of an instance. Events
might also be defined in combination with time events.

Instance events are either property or object events, de-
pending on whether the context defines a property or an
object type.
 Event

rules Rules

Rules provide definition of behavior in the context defin-
ing the rule. Any number of rules can be defined within a
context for describing constraints, actions and derivation
rules.
 Rule

 - 75 -

Associations

constraints Constraints

Constraints allow defining sort of validation rules for in-
stances (object, property, collection), e.g. the birth date
of a person must not be greater than the current date or
persons younger than 18 years cannot be married.

Constraints usually define validation rules for instances
of a given object type and may refer to rules defined for
this object type. Usually, constraints refer to rules de-
fined as state features or as features of one of its gener-
alizations.

Object constraints allow defining the conditions (rules)
for defining a subtype from its generalizations. This is,
however, rather a rare case. E.g. adult inheriting from
person (generalization) might be defined as persons with
an age greater or equal than 18 years.

In principle, it is also possible to define types based con-
straints. This is defined, however, rather as set relation
than as a new object type. Since there is no clear bor-
derline between type and set relation, each defined ob-
ject instance collection could also be defined as new
type.

Practically, constraints might be defined directly instead
of referring to a named rule. Only, when the rule be-
comes very complex or is rather common, an explicitly
defined rule might be referenced, instead.
 Rule

- 76 -

4.4.1 Key - Keys

A key is an object type defined in the context of an object type. A key consists of a

subset of properties defined for the object type owning the key. Thus, a key also

defines a projection rule for object instances of the object

type. A key consists of one or more key components (prop-

erties). A key component is a feature relation that refers to

a property defined in the object type that owns the key. A

key may consist of any number of key components, but re-

quires at least one.

At the first glance, keys seem to be an implementation issue, but this is not always

case. Since keys are used for identifying object instances or ordering object in-

stances in an object collection, keys have got a conceptual meaning, too.

Generalizations

ObjectType Object type

A key is an object type, which only inherits attribute from
Object Type. All other features are disabled for keys.
 ObjectType

Associations

properties Properties

Key properties or components are a feature, which de-
fines the components a key consists of. Usually, key
components are characteristics, but parts might be de-
fined as key components as well. Associations or gener-
alizations cannot be defined as key property.

The property overloads the object type properties speci-
fication and refers to properties of the owning type or
one of its generalizations.
 Property

 - 77 -

4.4.2 ObjectType - Object types

An object type is a type that defines the intensional aspect of a single or a set of

individual objects, i.e. the properties an object type consists of and other common

features of individual objects belonging to the object type. Object type definitions

provide an intensional view to individual objects.

Since an object type usually refers to

common features for a set of objects,

object type definitions reflect a specific

interest or a specific view to objects in

the collection, i.e. the object type de-

scribes the properties and features of

object instances as specific view to ob-

jects of the given type.

Besides properties, the object type

definition may include other relevant features as rules, subtypes, classifica-

tions etc., which are listed below.

Object types support a number of features, which provide a detailed object type
definition. Most object type features are optional. The only mandatory feature re-
quired for each object type is at least one property (which might be a generaliza-
tion).

Most important features are data model relevant features as

 Properties

 Keys

 Extensions

Behavioral features are described as rules, which might be referenced as con-

straint, condition or action.

Several features describe causalities:

 Events

 Causalities

Some models consider generalization as feature relation for object types. Here,

generalization is considered as property.

Properties

Object type properties define the properties of an object type, i.e. characteristics

and concept relations, which define the specific view to an object by creating an

object instance as an image of reality. Properties are available for each object in-

stance of the given object type and determine the object instance state [UDT]. Ob-

- 78 -

ject type properties are usually defined as generalizations, characteristics, parts or

associations, which provide more specific property definitions. Since properties

defined in generalizations are inherited from the object type, those need not to be

redefined in each specialization. Properties except generalizations might be rede-

fined (specialized) in specialized object types.

Fixed characteristics

Fixed characteristics are characteristics with an assigned value (women are per-
sons with a fixed characteristic sex, which is female for all women). Fixed charac-
teristics a characteristic defined in on of the generalizations of the object type.

When a specialized object type is defined by the value of a classification attribute,
the fixed characteristic has to be defined as property of the object type. Fixed
characteristics have to refer to classifying characteristics of one of the generaliza-
tions.

Keys

Keys are projections of properties (usually characteristics) from the defined object
type. Keys are defined in order to identify object instances or in order to give more
weight to a number of attributes.

Classifications

In order to define a typed classification, i.e. a classification that may apply on ob-
jects of a given type, only, the classification may be defined as object type feature,
rather than as terminology model feature, which provides more global classifica-
tions.

Extensions

Extensions describe object instance collections. Actually, extensions are proper-
ties of a higher context (terminology module the object type is defined in) and
should be defined as properties there.

It is a matter of viewpoint, whether extensions are considered as feature of the ob-
ject type or as object type property in a higher context. On one side, it seems, that
discussing the concept of an object type (e.g. invoice), extensions seem to belong
to the definition of the object type. On the other hand, one could argue, that collec-
tions always require a specific context (e.g. an enterprise), for which the collection
is of relevance.

For practical reasons, the terminology model also allows defining extensions as
object type feature. Thus, one might define paid and unpaid invoices as feature of
the object type invoice, as well as an object collection containing all invoices.

Local object types

Within the context of an object type, local object types might be defined, which are
known within the context of the object type, only. Features defined for the object

 - 79 -

type, only, should reference local object types. Object types referred to by other
features of other object types must not be defined as local object types.

It makes a big difference, whether a property (e.g. address) or a local object type
(address) has been defined. A local object type never carries data but requires at
least one feature (property), referring to it.

This is an enhanced feature, which looks a bit technical. In fact, there are situa-
tions, where this becomes very useful in sense of terminology, e.g. when defining
different object types for address instances in person and enterprise object types.
Alternatively, one could, of course, create object types company address and per-
son address in the terminology model, but this may conflict with the way, language
is used in the subject area.

Feature inheritance

When an object type contains generalization properties, it will inherit all features
from its generalizations. Features might be overloaded by redefining a feature with
the same name and different meaning.

Properties, reactions, constraints and behavior might be redefined for specialized
features. Redefining a feature means that the new feature replaces the feature de-
fined with the same name for the generalization without changing the feature cat-
egory.

Property specialization is a typical way in human language for expressing slight
modifications for properties and behavior in specialized object types. Most tech-
nical environments do, however, not yet support property specialization.

Generalizations

Type Type

An object type is a type, which supports additional fea-
tures and feature relations.
 Type

Parts

associations Associations

Associations are instance properties, which define asso-
ciative object relations to other object instances.
 Association

- 80 -

attributes Instance attributes

Attributes are instance properties defined in the context
of an object type, which mainly define the object state of
an object instance.
 Attribute

classifications Classifications referenced by the object type

Classifications may be defined in the context of an object
type (or terminology module or model), which is consid-
ered as classification owner. The meaning of classifica-
tions may differ for contexts of different types.

Classification that may apply to any type of objects
should be defined in the context of the terminology mod-
el. Classifications applying to object of a specific type,
only, should be defined in the context of the correspond-
ing object type.
 Classification

extensions Object extensions

Object extensions are (global) features of the terminolo-
gy model or module. Thus, object extensions are not
part of an object instance and context property values do
not depend on specific object instance, i.e. object exten-
sions do not influence the object state.

Theoretically, object extensions could be defined as in-
stance properties in the corresponding parent context as
instance properties. Just because practical views tend to
refer to object extensions, those might be defined as fea-
ture of the object type. In general, it is a better style, de-
fining terminology model or module properties not as ob-
ject type extensions, but as instance properties of the
terminology model or module.
 Property

fixed characteris-
tics

Fixed characteristics

When a specialized object type is defined by the value of
a classification attribute, the fixed characteristics has to
be defined as feature of the object type. Fixed character-
istics have to refer to classifying characteristics of one of
the generalizations.
 FixedAttribute

 - 81 -

generalizations Generalizations

Generalizations are instance properties, which refer to a
more general view to an object.
 Generalization

keys Keys

Any number of keys might be defined in the context of
an object type. Within an object type, keys define a pro-
jection by means of instance properties defined for the
type or one of its generalizations.
 Key

parts Instance parts

Parts are object instances describing objects tightly con-
nected (owned) by the object instance. Nevertheless,
parts refer to a number of object instances, which pro-
vide a specific view to the object referenced.
 Part

types Types defined in the context of the object type

Within the context of an object type any number of (lo-
cal) object types might be defined. Type definitions are
provided, typically for terminology models and modules
in order to define relevant views to objects for different
subject areas.
 ObjectType

Associations

derivations Type derivation rules

In order to evaluate derived properties, derivation rules
of any type might be provided. In contrast to property
evaluation rules, type evaluation rules allow evaluating
several derived properties of an object instance as well
as deriving context properties.
 ObjectType

- 82 -

4.4.3 Part - Parts

A part is a property that defines a partitive or owning relation to one or more ob-
ject instances of a given object type. In [1087] parts are referenced as partitive
concept relations. The object model [ODMG] considers part-of relations as rela-
tionships or complex attributes.[UML] supports partitive relations as composite ag-
gregations. [ERM] defines partitive relations as table relations but not as instance
relations.

Technically, it is not possible to draw a clear borderline between partitive and as-
sociative concept relations or characteristics. Conceptually, it makes a big differ-
ence, whether parts of an object instance are considered to be dependent on or
owned by the referencing instance or not. It depends, however, on the specific
view, whether one considers e.g. wheels as part of a car or as association be-
tween car and wheels.

Technically, part properties might be implemented as parts, complex attributes or
as relationships, depending on the features supported by the target system.

Generalizations

Property Property

A part of an object is a property, which refers to a collec-
tion of one or more object instances owned by the ob-
ject. Parts inherit all features from the Property type.
 Property

Associations

keys Keys used by the property

In order to identify object instances or order instances
within a collection, keys defined in the object type refer-
enced by the property might be referenced.
 Key

 - 83 -

4.4.4 Property - Property

A property is an item that defines the extensional aspect of a general object col-

lection (e.g. everything that costs money or persons that have been in a movie at

a certain time, but also the names of a

person). Potentially, properties define ob-

ject collections even though, in many

cases, those collections consist of exactly

one value (e.g. person's birth date). A

property is related to a value (property in-

stance), which is part of an object in-

stance reflecting an individual object.

Properties may refer to single or complex

values as well as to collections of object

instances. A property instance is a value reflecting the property for an individual

object, the value of the property in a related object instance [UDT].

A property may define a collection of object instances of a given type and with a
specific role (e.g. children of a person). By means of property definitions,
knowledge about groups of objects can be expressed in different ways. Thus,
property definitions mainly express the extensional aspect of a general object in a
specific context (object type). The intensional aspect is expressed by means of an
object type the property refers to, which is the object type for all object instances in
the collection.

Properties can be defined as features of an object type, and thus also as features
of a terminology model. Properties always are defined as features of an object
type, i.e. property instances are part of an upper object instance, which represents
the state of an individual object.

Considering tables in the relational model [ERM] or extents in the object model
[ODMG], which are properties in the sense of the definition above, it seems that
properties may exist also independent on a higher context. However, the context
for those properties usually exists as individual object, but it might not be reflected
as such in data modeling.

Thus, a property is a feature, which describes an abstract object collection in a
higher context (object type, terminology model). Object collections defined by
means of properties may refer to single objects but also to groups of objects. Also
characteristics as name or first name of a person are also considered as object
collections with one element.

A property refers to an object type (feature relation) of the elements, which might
be stored in the property instance. In order to be consistent, types referred to by

- 84 -

the properties must be elementary (integer, text etc.) or have to be defined within
the terminology model, too.

Type relation

An important feature of the property is the type relation. Each property refers to a
type, which might be an elementary type as text or number, an object type defined
in the terminology model or a classification (enumerations).

Keys

In order to support object rating, unique constraints or for any other conceptual
reason, the property may refer to a number of keys defined for the object type re-
ferred to by the property. Typically, keys are used in connection with collection
properties.

Derivation rule

Properties may present the state of an object instance, but also refer to derived in-
formation. In order to define derived properties, an operation rule might be refer-
enced, which defines, how the derived information has to be evaluated. It does not
make sense storing e.g. the age of a person, but rather the birth date. Since age
might be a property of conceptual interest, age could be defined as derived prop-
erty calculated from the current date and the birth date.

Derived properties might be even more complex and may define derived views to
objects or even create derived object instances or collections.

Practically, derivation rules might be defined directly instead of referring to a
named rule. Only, when the rule becomes very complex or is rather common, an
explicitly defined rule will be referenced, instead.

Set relations

Typically, set relations for object type properties are described as supersets by re-
ferring to other properties. Properties referenced as superset might refer to proper-
ties defined in the higher context (parent item), to properties of the same or a re-
lated instance (local supersets).

In principle, set relations might become more complex and may describe complex
set hierarchies. This is, however, not very typical for object type properties.

Generalizations

Item State

A property defines an item and inherits several common
features from Item.
 Item

 - 85 -

Characteristics

derived Derived property

Derived properties are properties, which are derived
from other values of an object instance. Derived values
need to refer to a derivation rule defined for the property
(derivations).
 Yes/no

Associations

constraints Constraints

Constraints allow defining sort of validation rules for in-
stances (object, property, collection), e.g. the birth date
of a person must not be greater than the current date or
persons younger than 18 years cannot be married.

Constraints usually define validation rules for instances
of a given object type and may refer to rules defined for
this object type. Usually, constraints refer to rules de-
fined as state features or as features of one of its gener-
alizations.

Object constraints allow defining the conditions (rules)
for defining a subtype from its generalizations. This is,
however, rather a rare case. E.g. adult inheriting from
person (generalization) might be defined as persons with
an age greater or equal than 18 years.

In principle, it is also possible to define types based con-
straints. This is defined, however, rather as set relation
than as a new object type. Since there is no clear bor-
derline between type and set relation, each defined ob-
ject instance collection could also be defined as new
type.

Practically, constraints might be defined directly instead
of referring to a named rule. Only, when the rule be-
comes very complex or is rather common, an explicitly
defined rule might be referenced, instead.
 Rule

- 86 -

derivations Property derivation rules

In order to evaluate derived properties, a derivation rule
might be provided. In contrast to type evaluation rules,
property evaluation rules allow evaluating the value for
the property, only.
 Rule

fixed attribute Fixed attribute

When a property defines a subset by a value of a classi-
fication attribute, the fixed attribute has to be defined as
feature of the object type referenced by the property.
The fixed attribute has to refer to a classifying attribute
defined in the object type of the property.
 FixedAttribute

keys Keys

When a property is a collection property, the collection
might refer to one or more key as mean for accessing
individual object instances in the collection, for providing
rating sequences or in order to express unique con-
straints.
 Key

object type Type

Dependent on the complexity of the property, it may re-
fer to an elementary type, an object type or a classifica-
tion.

When the property defines a collection, the type defines
the object type for instances in the collection. This need
not to be exactly the type of object instances assigned to
the property but a generalization of all object instances,
which are element of the property.

When any kind of object instance might be collected in
the property collection, the most generic object type as
anything or similar might be referenced.
 ObjectType

subsets Subsets

Within a set hierarchy, any number of subsets might be
defined for a property. Subsets are properties defined in
a higher context.
 Property

 - 87 -

supersets Supersets

When being defined within a set hierarchy, the property
may refer to one or more supersets. Object type proper-
ties may refer to only one superset. Supersets are prop-
erties defined in a higher context. In case of referring to
more than one superset, the property collection is (a
subset of) the intersection of all supersets.
 Property

- 88 -

4.4.5 Rule - Rules

Object types and properties support a static definition of objects and object clas-

ses. An advanced knowledge approach, however, is to describe, how objects be-

have. Typically, the behavior of objects is described as common behavior of ob-

jects of a given object type ("birds are able to fly" or "things are able to fall").

One typical approach is describing behavior as rules. A rule is a feature that de-

scribes how object or property instances change from one state to the other or

how objects interact with other objects. Rules are referred to for different purposes

(rule categories):

 Constraints are used as validation rules for objects and properties

 State transitions describe the way how objects change

 Operations provide derived information

Defining rules is an advanced approach and not typically used when starting defin-

ing concepts. Later on, it becomes, however, important, because building applica-

tions is impossible without knowing the rules, according to which objects in the

application behave and interact with each other.

Typically, rules apply on single values, object instances or object collections. In

order to control rules, any number of parameters (properties) might be passed to a

rule. Depending on the rule category, it may change the state of the instance it

applies on or return a result property. Parameters and result are features of the

rule.

Generalizations

Feature Feature

A rule is a feature and inherits all features from the Fea-
ture type.
 Feature

Characteristics

type Rule type

A rule type should be defined in order to distinguish be-
tween different purposes of rules.
 RuleTypes

 - 89 -

Parts

parameters Parameter properties

Moreover, rules may refer to a number of properties
passed as parameters in order to control the behavior of
the rule.
 Property

result Result property

Rules may refer to a property in order to define the result
returned from the rule.
 Property

- 90 -

4.4.6 TerminologyModel - Terminology model

A terminology model is a concept area that describes a complex subject area,

which relates to an individual or general object. When the subject area is complex,

it is usually divided into sub areas, which are reflect-

ed as subordinated terminology models. In contrast to

other concept areas, terminology models define a

concept system.

A concept system as being defined in [1087] is a „set
of concepts structured according to the relations
among them“. This corresponds very much to termi-
nology models in TM. A concept system describes
concepts used in the specific subject area. Explicitly

defining a concept system might be a good starting point for defining a terminology
model, but it is to general in order to reflect important principles of expressing
knowledge in human language. Thus, the concept system has to be upgraded lat-
er on to a terminology model.

A terminology model also defines the object type to which the knowledge area to
be described, belongs. This might be either an individual object (as a specific en-
terprise) or a general object (enterprises as such, represented by a specific view
to enterprises). Thus, the terminology model for an accounting system for an indi-
vidual company will describe the company as in individual object. Providing a ge-
neric solution, which might be used by any company, the application describes the
general object company from the view of accounting processes.

In contrast to object instances, which are defined by an object type with well-
defined features, model features are more flexible and may easily change depend-
ing on specific requirements. Practically, creating a new object collection means
adding a new property to the model instance, but this is not considered as signifi-
cant model modification, which e.g. required database reorganization.

Each terminology model should be consistent in a way that it does not refer to
types, which are not defined in the terminology model itself or one of its parents.

In [ERM] the entry points are tables, which are features in the context of a project
or database. The project or database does exist, but is not defined as upper con-
text. Similar, in the object model [ODMG], where technically different contexts are
provided in terms of schema, module, namespace and type, the conceptual entry
points are types and extents (properties).

 - 91 -

Generalizations

TerminologyModule Terminology module

A terminology model is a terminology module and in-
herits the features from the terminology module.
 TerminologyModule

Associations

generalization Model generalization

When the model inherits from a (generic) model, the
generalization refers to the more general terminology
model. In case of model inheritance, the specialized
model inherits all features from its generalization.

Theoretically, a model might have more than one gener-
alization, but practical, there is none or one generaliza-
tion defined for a model.
 TerminologyModel

optional proper-
ties

Optional properties

Optional properties in a terminology model are features,
which define a number of common properties, which
might be associated with any object instance.
 Property

parent model Parent model

When the terminology model has been defined as sub-
model, the parent model refers to the terminology model
the current model is a sub-model for.
 TerminologyModel

specializations Model specializations

In case of model inheritance, the generic model may re-
fer to a list of specialized models.
 TerminologyModel

sub models Sub models

In order to divide complex areas into subareas, several
sub-models might be defined for a terminology model,
where each sub model defines a conceptual separated
subarea.
 TerminologyModel

- 92 -

4.4.7 TerminologyModule - Terminology Module

A terminology module allows collecting a set of concepts (object types and clas-
sifications) which provide a view to a certain aspect of a knowledge area. Practi-
cally, modules are used for grouping concepts by specific categories resulting
from the structure of the knowledge area – a concept field [1087].

Hence, the concept of terminological module is rather a practical issue in order to
improve the use of a terminology model. From a modeling point of view, it is not
required by TM. The distinction between model and module is rather based on
practical experiences than on theoretical considerations. Thus, it depends on the
view to the problem, whether a subordinated concept system is defined as module
or model.

Generalizations

ObjectType Object type

A terminology module is an object type that defines the
specific view to the individual or abstract object the ter-
minology module refers to.
 ObjectType

Associations

classifications Global classifications

Usually, a classification applies to objects (instances) of
a given type. Nevertheless, classifications sometimes
seem to be global in the sense that they may apply to
any type of object. Thus usually results from the fact,
that the object type hierarchy is usually not defined com-
pletely (e.g. a terminology model may define persons
and cars without considering, that both are things).

The terminology module allows defining classifications,
which are considered as global classifications in the giv-
en context, which means, that they may apply to any
group of objects in the terminology module.
 Classification

 - 93 -

collections Module collections

Collections defined for a module represent entry points
of the context. Each piece of information can be ad-
dressed starting with one of the collections defined for
the terminology module. Thus, collections represent the
object sets, which are considered as global in the con-
text of a terminology model or module.

Module collections do not necessarily belong to the con-
text instance described by the terminology model, but
may refer any object collection which is of interest within
the given context.
 Property

parent module Parent module

When the terminology module is a sub-module, it refers
to exactly one parent module, for which it is defined as
sub-module.
 TerminologyModule

processes Processes

Processes define relevant actions to be performed in the
given context. A process is a rule, but in contrast to other
rules, the process is usually initiated explicitly.
 Rule

reactions Complex reactions

Most reactions are defined in the context of a type or
property. When an event causing a reaction becomes,
however, more complex, e.g. because several object in-
stances (of different object types) are required in order to
define the event, the reaction cannot be described in the
context of an object type or property.
 Causality

sub modules Sub modules

In order to group tasks, which do not depend on the or-
ganization structure of the model instance, a terminology
model or module might be divided into a number of sub-
modules.
 TerminologyModule

- 94 -

4.4.8 Type - Type

A type is an item, which includes object types as specialization. Types are refer-
enced by properties in order to define the way, property instances are provided.

Types are also referenced (as
object types) by classifications
and categories.

Types do not support special
features or feature relations,
which are defined for special-
ized types as object type and
classification.

As an item, the type supports
defining behavior and reactions of the general object as rules, events and causali-
ties. These are typical features for object types, but also elementary types and
classifications may define specific behavior.

Generalizations

Item Item

A type is an item and inherits common features as be-
havior and causalities from Item.
 Item

 - 95 -

4.4.9 ElementaryTypes - Elementary types

Elementary types are types as text or number, which are considered as atomic
from a conceptual point of view. It is a matter of taste, what is considered as ele-
mentary type. The elementary types listed below should be considered rather as
proposal than as a complete list of elementary types.

Also classification types refer to elementary values, but those are considered as
separate type category.

Categories

any Any kind of data

The type refers to any kind of data, where the current
type of the data referenced is not known. It simply
means that any type of data might be referenced.

binary Binary data

Binary is a generalized data type for any kind of non-
textual and non-numeric data (e.g. movies, sounds, exe-
cutables etc.).

currency Currency

Currency is used to express the value of a certain item.
The type of currency (Euro, Dollar etc.) is not part of the
conceptual type.

date Date

Date is considered conceptually as elementary value,
although it usually consists of day, month and year.

name Name

The type name typically applies on characteristics, which
consists of rather short text information used for identify-
ing object instances in a collection. Usually, non-numeric
identifying characteristics are associated with type
name.

number Number

Numbers are used for quantitative characteristics in or-
der to store the quantity of a certain item.

- 96 -

text Text

Text type provides sufficient capacity for referring to text
data of any size. Text is typically used as data type for
descriptive characteristics.

time Time

Time is considered as elementary value from a concep-
tual point of view, although it usually consists of hour,
minute, second etc. The precision of tome type depends
on the specific subject area, i.e. physicians may consider
time values measured in nanoseconds of even more de-
tailed, while the administration of a university is satisfied
with time measured in hours and minutes.

timestamp Timestamp

Timestamps provide a time point including data and time
or the number of seconds with any precision after a well-
defined 0-time point. Similar to date and time, timestamp
is considered as elementary from a conceptual point of
view.

title Title

Title refers to text data with limited size (e.g. 200 charac-
ters). Similar to text, title is typically used as data type for
descriptive characteristics.

yes/no Yes or No

Yes/No (Boolean) is used for properties, which are either
true or wrong. Indeed, this is a classification, but concep-
tual, it is not considered as such and should be support-
ed as elementary type in a terminology model. it is

 - 97 -

4.4.10 EventTypes - Event types

Event types are defined in order to provide appropriate event handling.

Categories

transition State transition event

State (transition) events are describing events as rele-
vant state transitions, i.e. as state or state transitions
that may cause a reaction, e.g. when a person has been
born (cause) it has to be registered in the birth register
(reaction).

temporal Temporal events

Temporal events are describing events as consequence
of time state transitions, e.g. when a person has birthday
(cause). Temporal events may also include state transi-
tions.

According to [UDT] state changes might be caused by
value changes or changes in time. The question is,
whether an object changes its state, just because time is
passing by. Supposed, that an object has an age, the
age will change with the time, and thus, the object will
change its state. On the other hand is the fact that the
object is getting older a consequence from changing
time. Thus, it becomes more realistic, considering the
changing time (in combination with other object states as
e.g. birth) as event rather than the age.

process Process events

Process events are describing reactions by means of
process event types, i.e. generic events that indicate
changes in the process state of an object (being looked
at, being changed etc.). Process events may cause typi-
cal reactions in an application.

Process events are not caused by state changes in the
sense of [UDT], but by changing the process state.
Since process events are the events handled most fre-
quently, those have been added to the terminology
model, even though, they are of technical nature.

- 98 -

read After read event

The event is generated after an object instance has
been read.

store Before store event

The event is generated before storing an object in-
stance.

modify Before modify event

The event is generated before modifying an object in-
stance.

create Before read event

The event is generated before creating a new object in-
stance.

remove Before remove event

The event is generated before removing an object in-
stance.

delete Before delete event

The event is generated before deleting an object in-
stance.

insert Before insert event

The event is generated before inserting an object in-
stance. The object instance does already exist.

created After created event

The event is generated after a new object instance has
been created.

deleted After deleted event

The event is generated after an object instance has
been deleted.

inserted After inserted event

The event is generated after an object instance has
been inserted.

modified After modified event

The event is generated after an object instance has
been updated.

 - 99 -

removed After removed event

The event is generated after an object instance has
been removed.

stored After stored event

The event is generated after an object instance has
been stored.

- 100 -

4.5 FeatureTypes - Feature types

Feature types define the object types supported as feature specializations. Fea-
tures never appear as such, but as one of the listed specializations, only.

Categories

type Object type

The feature is defined as object type
 Type

property Property feature

The feature is defined as property.
 Property

rule Rule feature

The feature is defined as rule
 Rule

key Key feature

The feature is implemented as key.
 Key

event Event feature

The feature is defined as event.
 Event

causality Causality feature

The feature is defined as causality, i.e. it describes a re-
action
 Causality

item Item

The feature is an item and may provide several subordi-
nated features.
 ObjectConcept

association Association

The property is an association.
 Association

characteristic Characteristic

The property is a characteristic.
 Characteristic

 - 101 -

part Part

The property describes a part of an object.
 Part

generalization Generalization

The property defines a generalization of an object type.
 Generalization

object type Object type

The type (item) is defined as object type.
 ObjectType

elementary type Elementary types

Elementary types are types (items) without properties.
Elementary types may provide behavior and causalities.

terminology mod-
el

Terminology model

When defining a terminology model as sub model of an-
other terminology model, the terminology model be-
comes a feature.

category Category feature

A Category features are defined as categories of a clas-
sification or parent category. A category becomes a
classification, again, when it refers provides a list of sub
categories.
 Category

classification Classification

A classification defines a type that allows assigning indi-
vidual objects to categories of this classification.
 Classification

aggregation type Aggregation type

The object type is an aggregation type, which applies on
classified collections.

- 102 -

4.5.1 ImportanceLevels - Importance levels

Importance levels describe the weight of concepts. The terminology model just
provides a few categories, which might be extended when being used in an appli-
cation.

Categories

problem relevant Problem relevant concept

Problem relevant concepts are concepts, which are part
of the subject area terminology, i.e. concepts that refer
to terms used by subject matter experts.

technical Technical concepts

Technical concepts are concepts that result from imple-
mentation issues. Usually, technical concepts are not of
interest for subject matter experts.

 - 103 -

4.6 ItemTypes - Item types

Item types define different categories for general Items.

Categories

model Terminology model

A terminology model is an item that provides terminology
definitions for a specific subject area.

module Terminology module

A terminology module is an item, which provides termi-
nology definitions for a specific theme relevant for a sub-
ject area.

type Type

A type is an item, which describes the way an instance is
represented, i.e. the properties, it contains or the way,
how it is represented when appearing in an object in-
stance.

property Property

A property is an item, which describes a general proper-
ty of an object or aggregation type.

attribute Attribute context

An attribute context is a context, which describes an at-
tribute.

generalization Generalization context

A generalization context is a context, which describes a
generalization.

association Association context

An association context is a context, which describes an
associative object relation..

part Part context

A part context is a context, which describes a partitive
object relation.

identifying Identifying attribute

An identifying attribute is an attribute, which is used for
identifying instances in a object collection.

- 104 -

quantifying Quantifying attribute

A quantifying attribute is an attribute, which provide
quantities as object characteristic. Usually, quantifying
attributes are numeric attributes.

classifying Classifying attribute

A classifying attribute is an attribute, which allows classi-
fying an object instance according to the classification or
superset (value domain) the attribute is based on. When
the value domain is a type classification, the category
set for the attribute determines the object type for the ob-
ject instance the attribute belongs to.

descriptive Descriptive attribute

A descriptive attribute is an attribute, which provides a
textual description for an object.

classification Classification

A classification refers to a set (hierarchy) of object col-
lections classified by categories of a classification (clas-
sified objects).

 - 105 -

4.6.1 RuleTypes - Rule types

Rule types define different purposes of rules. This list is not complete, but defines
relevant rule types as known so far.

Categories

constraint Constraint

Constraints might be defined in order to decide, whether
an object instance might become an element of the col-
lection or not. On the other side, constraints might define
validation rules in order to check the validity of proper-
ties.

Constraints are rules, which return true in order to indi-
cate that the instance or property is valid and false oth-
erwise.

transition State transition rule

A state transition rule or action defines the way an object
or related objects change under certain circumstances.

operation Operation rules

Operation rules create an additional property (result) re-
ferring to the derived concept. Operation rules may re-
turn elementary values, but also complex instances or
collections. Typically, operation rules are defined as in-
stance (row) operations, of collection operations. In gen-
eral, however, operation rules may apply on any sort of
arguments.

- 106 -

5 References

[TM] Terminology Model, RUN Software, Berlin, 2005
http://www.run-software.com/inhalt/downloads/documentation/P2_TerminologyModel_v1.pdf

[TM1] Neuchâtel Group I: Neuchâtel Terminology Model (Classifications), Stock-
holm, 2006
http://www.run-software.com/inhalt/downloads/P2c_TerminologyClassifications_v21.doc

[TM2] Neuchâtel Group II: Neuchâtel Terminology Model (Variables), Oslo, 2006
www.run-software.com/inhalt/downloads/documentation/P2b_TerminologyVariables_v1.doc

[1087] ISO 1087 Terminology work – Vocabulary
ISO 704 Terminology work Principles - and methods

[ODMG] R.G.G. Cattell, Douglas K. Barry: The Object Data Standard: ODMG 3.0
 Morgan Kauffmann Publishers 2003

[UML] OMG Unified Modeling Language™
 http://www.omg.org/spec/UML/2.4

[UDT] Karge R.: Unified Database Theory, RUN Software, Orlando (Florida), 7th

World Multiconference on Systemics, Cybernetics and Informatics (SCI
2003)

http://www.run-software.com/inhalt/downloads/documentation/P1_UnifiedDatabaseTheory.pdf

http://www.run-software.com/inhalt/downloads/documentation/P2_TerminologyModel_v1.pdf
http://www.run-software.com/inhalt/downloads/documentation/P2c_TerminologyClassifications_v21.doc
http://www.run-software.com/inhalt/downloads/documentation/P2b_TerminologyVariables_v1.doc
http://www.omg.org/spec/UML/2.4
http://www.run-software.com/inhalt/downloads/documentation/P1_UnifiedDatabaseTheory.pdf

