

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010

run

Object-oriented views

Reinhard Karge

 Page 2 of 19

May 2004

March 2007 (revised)

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 Page 3 of 19

Content

1 Introduction .. 4
ODABA2 ... 4
Platforms .. 4
Interfaces ... 4
User Interfaces ... 4

2 Overview ... 6
Access Path ... 6
OQL Expression ... 6
Document generation ... 6
Running OSI ... 7
Examples ... 7
Sample queries ... 9

3 Property path extensions ... 11
Path definition .. 11
Sub-paths ... 12
Join path ... 13
Instance filter .. 13
Result type ... 14
Order .. 15
Grouping instances .. 16
Aggregation operations .. 17
Other operations .. 18

4 Summary .. 19

5 References ... 20

 Page 4 of 19

1 Introduction

ODABA2 ODABA2 is an object-oriented database system that
allows storing objects and methods as well as causali-
ties. As an object-oriented database, ODABA2 supports
complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA2-applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA2-applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA2-applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA2 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA2 supports several technical interfaces:

 C++, COM as application program interface (this
allows e.g. using ODABA2 in VB scripts and ap-
plications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA2 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA2 provides a special ODABA2 GUI builder.

 Page 5 of 19

2 Overview

 The ODABA Scrip Interface (OSI) defines an expression
syntax that is based on the OMG standard of the database
management group ODMG ‟2003 (OQL). It can be used as a
query language as well as an expression language for defin-
ing expressions or functions for ODABA object classes.

 OSI allows defining SQL like queries for an ODABA data-
base. In addition, OSI provides a JAVA like expression lan-
guage, which allows providing complex functionality. Thus,
OSI consists of two parts, a common expression language
and the SQL syntax that may refer to the expression lan-
guage.

 Expressions defined by means of OSI are always creating a
result, i.e. they will not produce output like tables. The result,
however, can be an elementary value, a complex instance, a
set of values or a set of instances.

 OSI supports to essential types of queries, OQL expressions
and access paths. Expressions may contain access paths as
well as an access path may contain expressions in different
places.

Access Path An access path is an extension of the OQL query language
considering directives of standard query languages (as se-
lect, from where …) as operations. This allows calling differ-
ent operations in any order passing the result from each op-
eration to the next operation.

OQL Expression An OSI expression usually consists of a set of statements,
which are executed sequentially. As well as an access path
an expression returns a value, which might be atomic or
complex. Within an OSI expression you may process state-
ments conditionally (if, switch)) or in loops (while). The ex-
pression syntax is Java or C++ like and thus, familiar to
many developers.

Document genera-
tion

Beside basic expressions that can be defined in OSI, an ex-
tended expression syntax is provided that allows the specifi-
cation of document expressions or document templates.
Document templates can be used to create documents
(ASCII, RTF or HTML documents) by means of expressions.

 Page 6 of 19

Running OSI OSI can be executed in several ways. Practically, all the
possibilities are equivalent, i.e. you can express the same
with each of this features. The difference is mainly the envi-
ronment, where those expressions can be used.

C++ program In a C++ program OSI expressions can be imbedded as ac-
cess paths (OpenAccessPath) or by calling appropriate ex-
pression functions (ProvideExprDecl, Execute). Both ways
return a property handle that allows accessing an elemen-
tary value or a collection of returned instances.

OShell Utility OShell allows running any database function from a com-
mand line environment. Thus, OShell can be used to open
access paths as well as defining and executing expressions
like in a C++ program.

View definition View definitions or predefined views are another way of de-
fining queries, which may refer to expressions and access
paths. Pre-defined views are part of the database model and
can be accessed like normal instance collections.

Examples The document will refer to examples based on a simple
structure.

 Ex1: We consider Persons and Accounts. An account might be

owned by one or more persons. A person may have any number of
children and each person has an income.

 This can be expressed in ODL as follows:

 class Person (extent persons)

{

 attribute string id;

 attribute float salery;

 relationship set<Account> accounts

 inverse Account::owner;

 relationship set<Person> children

 inverse Person::parents;

 relationship set<Person> parents

 inverse Person::children;

}

 class Account (extent accounts)

{

 attribute string acc_no;

 attribute float saldo;

 relationship set<Person> owner

 inverse Person::account;

}

 The relational definition would look like:

 Page 7 of 19

 create table Person (

 id int IDENTITY (1, 1),

 name varchar(50),

 salary float(53),

);

create table BankAccount (

 id int IDENTITY (1, 1),

 [value] float(53),

 number int

);

create table ParentChild (

 id int IDENTITY (1, 1),

 child int,

 parent int

);

create table PersonBankAccount (

 id int IDENTITY (1, 1),

 person int,

 account int

);

ALTER TABLE dbo.Person

 ADD CONSTRAINT FK_Person_Partner

FOREIGN KEY (partner) REFERENCES dbo.Person (

id)

ALTER TABLE dbo.BankAccount

 ADD CONSTRAINT FK_BankAccount_Owner

FOREIGN KEY (owner) REFERENCES dbo.Person (

id)

ALTER TABLE dbo.ParentChild

 ADD CONSTRAINT FK_ParentChild_Parent

FOREIGN KEY (parent) REFERENCES dbo.Person (

id)

ALTER TABLE dbo.ParentChild

 ADD CONSTRAINT FK_ParentChild_Child

FOREIGN KEY (child) REFERENCES dbo.Person (

id)

ALTER TABLE dbo.PersonBankAccount

 ADD CONSTRAINT FK_PersonBankAccount_Person

FOREIGN KEY (person) REFERENCES dbo.Person (

id)

ALTER TABLE dbo.PersonBankAccount

 ADD CONSTRAINT FK_PersonBankAccount_Account

FOREIGN KEY (account) REFERENCES

dbo.BankAccount (id)

 Because of the M:N relationship between persons and ac-
counts and persons and children we have to introduce ap-
propriate intermediate tables.

 Page 8 of 19

Sample queries There is a list of three queries, which we are going to com-
pare. We will start with a simple example as getting the total
income from children, going to a more difficult query as get-
ting the total amount of money on a persons account, con-
sidering, that the money for each person is the sum of mon-
ey on person‟s accounts supposing that common accounts
are owned by equal parts for all account owners. The third
query is simply combining the first two.

SQL Appropriate SQL statements would look as follows:

 select

 pers_id,

 chld_income: sum(select income

 from p.children)

From persons p

 select

 pers_id,

 tot_saldo: sum {

 select

 saldo: a.saldo/count(a.owners)

 from p.accounts a)

From persons p

 select

 id: p.id,

 chld_income: sum(select salary: c.salary

 from p.children as c)

 tot_saldo: sum {

 select

 psaldo: a.saldo/count(a.owners)

 from p.accounts as a)

from persons as p; // (147 characters)

OSI Using OSI with standard OQL features, the three queries
could be defined as follows:

 Select pers_id,

 children{chld_income = Sum(income);}

From persons;

 Select pers_id,

 accounts{

 tot_saldo = Sum(saldo/owners.GetCount};}

From persons;

 Select pers_id,

 children{chld_income = Sum(income);},

 accounts{

 tot_saldo=Sum(saldo)/owners.GetCount};}

From persons;

 Page 9 of 19

 Obviously, the last two cases are more difficult to define and
to interpret. This was the reason to consider a more sophis-
ticated way of using property paths with an extended mean-
ing.

Enhanced OSI Enhanced OSI uses some specific extensions for access
paths, which allow defining the query as path expression.

 persons.select {

 id,

 chld_income = Children->sum(income)

};

 persons.select (

 id,

 tot_saldo = accounts.select(

 part:saldo/owners->count)->

 sum(part)

);

 person.select {

 id,

 chld_income = children->sum(income)

 tot_saldo = accounts.select(

 psaldo:saldo/owners.count)->

 sum(psaldo)

}; // (119 characters)

 Obviously, enhanced OSI provides shortest way of express-
ing the query. But it seems also, that the idea of the query is
easier to grasp in the last case, which makes programs eas-
ier to understand. Moreover, enhanced OSI paths can be
used within other OSI expressions.

 Since traditional queries and access paths will produce the
same result, you may use the one or the other way.

 Page 10 of 19

3 Property path extensions

 There is no doubt about the usefulness of property paths.
The problem, however, is that property paths can be inter-
preted in different ways. Here we will introduce a syntax that
provides a unique interpretation for property paths and leads
to extreme simplifications in query expressions.

Path definition According to the OMG standard [1] a path is a sequence of
property names according to the type definitions. This allows
addressing complex properties as well as traversing refer-
ences. In [3] we have shown that each property path corre-
sponds to a schema, which includes an extensional and an
intentional (type) definition. Moreover, it has been shown,
that combining property paths with operations leads to a
more general definition for a path.

 Each property path has an origin, which might be either an
object identifier or an extent.

 Persons().accounts().owners

 Moreover, it has a terminal property, which determines the
result schema. The expression above refers to a collection
(bag) of all owners for the accounts for all persons. This,
obviously defines a person collection. According to the OMG
standard [1] we can also combine property paths with opera-
tions which syntactically may lead to expressions as:

 persons.IncomeGroup()

 Operations may get parameters. Since operations are
schemata and schemata are operations [3], we can say in
general, that a path is defined as:

path := element {.element} |

 element {->element}

element := path | [path] | name (parm_list)

name := prop_name | oper_name

parm_list := parameter {, parameter}

 We will not focus here on what parameters means in detail.
The important thing is that each element returns a type,
which allows checking, whether the succeeding element
name is defined as member of the preceding element type.

 Page 11 of 19

 There are two possibilities to modify the schema defined by
an element in the property path. We can modify the exten-
sion of the result as well as the intention. Hence, we added
two additional options to the definition of an element in a
path.

Sub-paths There are always two ways interpreting a path. Considering
the path persons().accounts, we can interpret this as a

collection (bag) of all accounts owned by persons, but also
as an inner join between persons and accounts, which re-
sults in a person/account instance. In OSI this difference
could be expressed as:

 Select a from persons.accounts as a

 Select p, a from persons as p, p.accounts as a

 Within a property path we can use sub-paths to differ be-
tween inner joins and “last property type”. We use the [] op-
erator to indicate inner joins and interpret paths not enclosed
in [] as returning a type according to the last referenced
property:

 Persons().accounts type: Account

 [persons().accounts] type: Person, Account

 The type (implicitly defined class) for an inner join is always
based on the types involved in the path, i.e. in the example
the result type is based on Person and Account. This al-

lows referring to methods defined in the referenced base
classes.

 Considering the path [person().children], which is

based on Person, Person, names become ambiguous.

This ambiguity can be avoided by prefixing referenced
names always with the sub-path addressing the appropriate
level in the path (e.g. person.name or children.name)

 Practically, paths may include references (relationships) as
well as attributes within complex types. Theoretically, this
makes, however, no difference. It just not makes much
sense to define a path like address.city as inner join

[address.city] although this would be possible.

 Sub-paths in a path can be nested within a path.

 Page 12 of 19

Join path Usually, a path begins with a property or method valid in the
given context. Since OSI may refer to sources, which cannot
be expressed as simple paths, a generic operation is re-
quired, which allows combining independent paths. There-
fore, we can use the „from‟ operator in the same sense as
defined in OQL.

Join_path := from(path_ref {,path_ref})

Path_ref := [name:] path

 The from operator can be used for simple paths as well, but

it is not required. The advantage using the from operator

instead of the from clause in the OQL statement is, that the

from operator defines an operation, which can be used in a
path. This allows reading an expression “from left to right”
instead “from inner to outer” as in an OQL statement.

The output for a from operation is the Cartesian product of

all paths passed as parameters to the operation. It creates a
type (class), which is based on the types (classes) of all
paths involved. Names can be given to paths to avoid ambi-
guity.

Instance filter Instance filters are expressed in an OQL statement in where

and having clauses. Within a path the position of the filter

defines its scope and we need not to differ between where

and having. Instead, we will always use the operation

where, which selects the instances from the preceding path

expression.

 Filters allow changing the extension of a collection, but do
not change the structure of the instances. Usually, a filter
defines a condition, which is true for all instances in the re-
sult schema. Instances, which return false (or empty) for the
condition, are not considered as instances of the result col-
lection. Because filters can be used for any element in the
path, they are easier to use in complex queries than where
clauses.

 The expression for an instance filter must be defined in the
scope of the schema, which results from the preceding ele-
ment or sub-path.

 persons.where(income>2000).

 children.where(age>10)

 This expression returns all children older than 10 years,
which have a parent getting more than 2000 EURO per
month. This is a simple way of expressing the OQL-query:

 Page 13 of 19

 select c form persons p, p.children c

 where p.income > 2000 and c.age > 10

 Using filter in a path expression does not only improve the
readability of an expression but automatically leads to an
expression optimization.

 A filter is a special element in an OSI path with the follow-

ing definition:

filt_elmt := op_name(condition)

op_name := where | having

condition := valid OSI expression

 For compatibility reasons, we will use where and having in

a path expression. The filter condition (expression) must be
a valid expression in the context of the type defined by the
preceding element (sub-path).

Result type Each element or sub-path in a path expression implicitly or
explicitly defines type. The type for the result depends on the
property or operation in the path. For generic operations as
filter or from the rules for constructing the result type have

been defined. User defined operations usually have an de-
fined output type.

 It is a general requirement, that each element or sub-path in
a path returns a defined type. Sometimes, the type can be
determined at runtime, only (e.g. when the collection is weak
typed or untyped). In OQL this feature is called late binding.
The consequence is, that the expression cannot be validated
in advance. When running the expression, however, each
instance returned as result must be associated with a de-
fined type.

 In some cases the data type of the result needs to be de-
fined explicitly in the OQL statement (select clause).

 A type operation is a special element in an OSI path with

the following definition:

type_elmt := select(type_def)

type_def := prop_list |

 type_name [(prop_list)] |

 * [, prop_list]

prop_list := prop_spec [,prop_spec]

prop_spec := prop_name [= src_expr]

src_expr := valid OSI expression

 Page 14 of 19

 For compatibility reasons we will use select, instead of

type, although type would be more appropriate. The source

expressions for properties (srce_expr) must be a valid ex-
pression in the context of the type defined by the preceding
element (sub-path).

 This includes two ways of defining target structures. One is a
typed target instance, which is defined by referring to a type
name. The type name is a pre-defined type in the database
or OSI expression. When a type name is passed with no
property list, property values are assigned by name, i.e. all
properties in the result instance of the element are assigned
to properties with the same name in the target instance.
When using typed target with a property list, the property list
may contain property names defined in the target type, only.

 When not defining a type name, but a property list only, the
target is considered as untyped in a sense, that all instances
in the target collection have the same structure, but there is
no name given to the structure. In this case the property list
defines the properties for the target. When the target struc-
ture should contain all properties from the source an * can
be passed instead of the names for all properties of the
source.

 persons.select{*, age = (Date()–birth).Year()}

 This expression will return all person properties plus the age
calculated from the birth. This expression corresponds to the
standard OQL expression

 select

 p, age = (Date()–p.birth).Year())

from Persons p

 The type operator creates internal unnamed types, which
may act as input to generic operations and expressions, but
which cannot have predefined operations.

Order There are different ways ordering the result of an element or
sub-path. The order can be defined by means of expres-
sions or attribute references, but also by means of sort keys,
when the system supports sort keys.

 Now, we can define the order operation as generic operation
within a property path as:

 Page 15 of 19

order_elmt := order_by(order_def)

order_def := key_name [(asc | desc)] |

 sort_field [, sort_field]

sort_field := sort_expr [(asc | desc)]

sort_expr := valid OQL expression

 Order_by is a generic operation, which returns the same
collection, just re-ordered, i.e. type and extent of the collec-
tion remain unchanged.

Grouping instances Grouping operations in OQL are expressed as group by

clause. Since the object model supports ad hoc groupings
by definition and may support classifications as conceptual
groupings [3], grouping operations are required only for de-
fining groups which are not defined in the data model.

 The OQL standard [1] allows grouping by value but also by
derived values. Thus, a grouping may define the extension
of the output implicitly or explicitly.

group_elmt := group_by(group_def)

group_def := prop_expr | val_spec [,val_spec]

prop_expr := prop_name | expression

val_spec := val_name [: condition]

condition := valid OSI expression with type boolean

 A grouping definition is based either on an attribute value
(each attribute value creates a separate group) or on an ex-
plicit list of grouping values. Defining an explicit value list for
a grouping requires associated Boolean expressions for as-
sociating an instance with a grouping value. The instance is
associated with the first value, for which the expression re-
turns true.

 Defining the last value without expression will associate all
instances, which do not any of the previous expressions,
with the last (default) value. When no default value is de-
fined, instances not matching any expression are skipped.

 The extension of the result of a grouping operation is deter-
mined by the attribute values (when referring to an attribute)
or by the values in the list.

 The type of instances in a grouping result is constructed
from the grouping attribute (or string in case of a grouping
list) and a relationship partition.

 persons.group_by(

 low: income < 1000,

 medium: income >= 1000 and income < 5000,

 high)

 The example above creates an internal result type as:

 Page 16 of 19

 struct(

 attribute value string,

 relationship bag<Person> partition)

 When grouping instances by an attribute (which might be a
complex attribute as well) the implicitly generated result
structure of the operation contains the attribute instead of
the standard attribute value.

 persons.group_by(age)

 Results in:

 struct(

 attribute age long,

 relationship bag<Person> partition)

 The type for the attribute is taken over from the original at-
tribute definition in the input collection.

Aggregation opera-
tions

OQL and OSI allow referring to instance or object operations
within a property path. Moreover, it provides some general
aggregation expressions as sum or count. A more general

solution, however, would be to differ between instance and
aggregation operations. While an instance operation applies
to any instance in a collection, an aggregation operation ap-
plies to the whole collection and creates one single instance
for each collection.

 OSI allows defining an expression as instance or collection
expression. Also build-in functions are precisely defined as
instance or collection operations, but in some cases, user-
defined methods will not provide this information. In such
cases, we need a language extension, which allows distin-
guishing between instance and collection operations.

 OSI differs between collection and instance operations by
using the () operator. Using the () operator will path each
instance of the collection to the following operation. Not us-
ing the () operator will pass the collection to the operation.
The operator always applies to the nearest preceding ele-
ment or sub-path.

 Persons().children.sum(income)

[persons.children]->sum(children.income)

 The first expression returns an income value for each person
(sum of income of all children). The second query returns
one income value, which contains the sum of incomes of all
children of all persons.

 Page 17 of 19

 Combining the collection operator with the type operator al-
lows defining a number of aggregation operations for one
collection.

 persons.children->select(

 tot_inc: sum(income),

 avg_inc: avg(income),

 number_of_children: count

)

 In this case, each expression in the type operation should be
a valid collection operation. Any operation, which refers to
an instance expression, will return the value evaluated for
the last instance passed to the type operator.

Other operations Other operations known in OQL as intersect, union,

difference, can be easily expressed as operations and

can be added to a path whenever required, as well as differ-
ent types of join operations or user defined operations. Note,
that these operations are set operations, but not aggregation
operations. The semantics of those operations, however,
need some more explanation.

 Page 18 of 19

4 Summary

 The main difference with the path approach is, that is turns
the clauses of an OQL select statement into generic opera-
tions. This allows combining any sequence of operations in a
query. Since each operation provides the same features,
OSI path expressions are at least as powerful as OQL
statements.

 On the other hand, it can easily be shown, that there is an
OQL statement for any sequence of operations, which can
be defined with a path. Thus, we can say, that OQL and OSI
path expressions are equivalent. The missing feature of us-
ing user-defined collection operations must be considered as
temporary and not as a significant difference between the
two approaches.

 The advantage of path expressions is mainly readability and
flexibility. Since operations become independent it is a mat-
ter of knowing the semantics of each operation, which can
be combined freely.

 When considering path expressions as sequence of from,

select, where, order_by and group_by operations

combined with other generic or user-defined operations, it
becomes possible combining the advantage of the well
known SQL syntax with the short and precise way of ex-
pressing queries in paths.

 Page 19 of 19

5 References

[1] ODMG: The Object Data Standard ODMG 3.0,
Academic Press, 2000

[2] SQL

[3] R. Karge, Unified Database Theory, run-
software, 2003

